PEM is not over…

Peter Taylor and Mike Praul

A Better Specification

- Require the things that matter
- Measure them at the right time
 - Prequalification
 - Process control
 - Acceptance

What do we need?

- Transport properties (permeability)
- Aggregate stability
- Cold weather resistance
- Strength
- Shrinkage
- Workability

Transport properties (permeability)

- All deterioration mechanisms involve fluid movement
- Keep water out = longer life

- Test using resistivity
Aggregate Stability

- Alkali aggregate reaction
 - AASHTO R80 / ASTM C 1778

Cold Weather

- Freeze-thaw
 - Saturation
 - Entrained air (SAM)
- De-icing salts
- Sufficient SCM

Strength

- Strong enough to carry loads
 - Cylinders
 - Beams
 - Maturity

- Normally we get more than we need
- Not a substitute for the other properties

Workability

- Not too wet
- Not too dry

- Test with VKelly or Box
How do we proportion to achieve design goals?

<table>
<thead>
<tr>
<th>Aggregate System</th>
<th>Workability</th>
<th>Transport</th>
<th>Strength</th>
<th>Cold weather</th>
<th>Shrinkage</th>
<th>Aggregate stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type, gradation</td>
<td>✔️</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✔️</td>
</tr>
<tr>
<td>Paste quality</td>
<td>Air, w/cm, SCM type and dose</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Paste quantity</td>
<td>Vp/Vv</td>
<td>✔️</td>
<td>-</td>
<td>-</td>
<td>✔️</td>
<td>-</td>
</tr>
</tbody>
</table>

Implementation…

Implementation

<table>
<thead>
<tr>
<th>Not a problem in our state</th>
<th>Haven't thought about it</th>
<th>A good spec already in place</th>
<th>Some interest</th>
<th>Considering change</th>
<th>Adopted change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Freeze thaw</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Oxychloride</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregates</td>
<td>2</td>
<td>1</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrinkage</td>
<td>11</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Workability</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Still working on..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tools in the lab:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Response to vibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tools in the field:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Workability, air void stability, bleed, segregation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Feedback to the batch plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Water content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Curing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Time to saw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PEM: Where We Are Today

National Concrete Pavement Technology Center Webinar
September 14, 2021

MICHAEL F. PRAUL, PE
 SENIOR CONCRETE ENGINEER
FHWA, OFFICE OF INFRASTRUCTURE

Topics

- PEM and Performance Specification Background
- QC Tool
- PEM Project Highlights and States’ Status
- Sustainability
- Live From the MCTC

Evolution of Concrete Acceptance Testing

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Year</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slump Cone</td>
<td>1922</td>
<td>ASTM C143</td>
</tr>
<tr>
<td>Pressure Meter</td>
<td>1949</td>
<td>ASTM C231</td>
</tr>
<tr>
<td>Rapid Chloride Penetrability Test</td>
<td>1981</td>
<td>ASTM C1202</td>
</tr>
</tbody>
</table>

New Technologies
Performance Related Specifications (PRS)

Performance Based Specifications (PBS)

Performance is NOT...

Performance Engineered Mixture (PEM) Concepts

- Get beyond slump, strength, and total air content as determinants of concrete quality
- Incorporate tests that correlate to service life durability
- Appropriately apply those tests in agency acceptance and contractor quality control programs
- Develop specifications and practices to leverage quality control
- Remove prescriptive restraints from specifications
 - Minimum cement content
 - Single aggregate gradation
 - Slump

Better Assessment of Quality?

Option 1
- QC info: None
- Strength
- Slump
- Total Air

Option 2
- QC info: Unit weight
- Calorimetry
- Strength
- Resistivity
- SAM number

Jerry Voigt, ACPA Past President (ret.)

“It’s the agency’s responsibility to allow for innovation. It’s the contractor’s responsibility to deliver.”
How Do Contractors Deliver in a Performance Specification?

Prescriptive vs. Performance Specifications

Prescriptive/Method
- Agency dictates how the material or product is formulated and constructed
- Based on past experience
- Minimal/uncertain ability to innovate
- Requires agency to have proper manpower and skill set to provide oversight

Performance
- Agency identifies desired characteristics of the material or product
- Contractor controls how to provide those characteristics
- Maximum ability to innovate
- Reduced oversight burden on the agency

Quality Control for Concrete Paving: A Tool for Agency and Industry

Developed under a cooperative agreement; use is not required by Federal statute or regulation.

Technical Advisory Committee (TAC) Roster

<table>
<thead>
<tr>
<th>State Agencies</th>
<th>Contractors</th>
<th>Industry Associations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine DOT – Rick Bradbury</td>
<td>Rieth-Riley – Pete Capon</td>
<td>ACPA – Leif Wathne, Gary Mitchell</td>
</tr>
<tr>
<td>Michigan DOT – John Staton</td>
<td>Cedar Valley – Craig Hughes</td>
<td>NRMA/RCREF – Colin Lobos</td>
</tr>
<tr>
<td>Ohio DOT – Dan Miller</td>
<td>AJAX – Hugh Lunder</td>
<td>PCA – Paul Tennis</td>
</tr>
<tr>
<td>Iowa DOT – Todd Hanson</td>
<td>Duct Construction – John Privat</td>
<td>WCPA – Kevin McMullen</td>
</tr>
<tr>
<td>Minnesota DOT – Maria Masten</td>
<td></td>
<td>FHWA</td>
</tr>
<tr>
<td>Illinois Tollway – Cindy Williams</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mike Praz, Sam Tyson, Dennis Dzwonk, Jeff Withrow, Bob Conway</td>
</tr>
</tbody>
</table>
QC Tool Overview

- Roles and responsibilities for agencies and industry under performance specifications
- Organizational and project-level QC
- PEM approach
- Mix design and production QC
- QC monitoring by both agency and industry
- Statistical tools, control charts, etc.

QC Tool References

- Review of Agency QC Requirements
 - Commonly and less-commonly specified QC requirements (from review of roughly 15 agencies)
- Example QC Plan Provisions
- QC Plan Outline
- Appendix D: Suggested Model QC Plan
 - Based on NorthEast Transportation Training and Certification Program (NETTCP) Model QC Plan

 Developed under a cooperative agreement; use is not required by Federal statute or regulation. Material is included for informational purposes only and are not intended to reflect a preference, approval, or endorsement of any one product or entity by the Federal government.

PEM Implementation Incentive

19 States + FHWA & Industry (June 2021)

PEM Implementation Incentive Pilot Project

New York Highlights

- PEM approach typically is beneficial to State and industry
- PEM mix tested better in all tests vs. Class C
- 2nd supplier was reluctant to participate
 - Determined QC requirements were not much more than they currently do
 - Mix looked and placed better than Class C
- Needs
 - Training in new tests
 - Understanding roles and responsibilities in a performance specification (including QC monitoring)
 - Consider 56-day testing for resistivity
- Developing next project in NYC area (structural)
New York Highlights

Box Test: 45#/cy reduction in cement
- Contractor now using to develop mixes

Super Air Meter notes
- Need for technician training
- Attention to detail for correlation testing
- Concern with gauge durability

Surface Resistivity
- Invaluable information for agency and industry
- Easy to perform, no changes needed

Expanded typical QC requirements
- 2020 project use proposed by contractor. Approved!

Iowa Highlights

“After dropping 45 pounds per cubic yard of cement out of our QMC mix and performing the Box Test, we were astonished and actually paved a considerable quantity with the PEM adjusted mix with very good results.” (contractor)

Box Test
- Highly useful in mix development and evaluation. (contractor)
- Simple, easy test. Potential to add to specification. (NCDOT)

Super Air Meter
- After some training, readily incorporated into QC. (contractor)
- Doing more shadow testing and consider future use. (NCDOT)

Surface Resistivity
- Easy. Readily incorporated into QC. (contractor)
- Easy. Affordable equipment. Will equip all State labs. (NCDOT)
- UNC-Charlotte working to develop 28-day result to correlate with 56-day results.
North Carolina QC

Successive trial batches with mixture proportions changed to improve consistency.

“Valuable experience” (contractor and NCDOT)

“Due to project schedule, we were unable to apply the PEM criteria during the preliminary mix design phase. However, going forward, we intend to implement PEM guidelines on future PCCP projects.” (contractor)

“The Department will continue to explore PEM to see how these tests and other AASHTO PP 84 provisions will work with our daily operations.” (NCDOT)

NCDOT will pilot PEM bridge project.

North Carolina Highlights

Colorado

• Open House (2018)
• Spec revision (2019)
 o Removed max and min cement content
 o Allows optimized aggregate gradation
 o Box Test in mix design
 o Resistivity
 o Max shrinkage
• Industry support for PEM

Pennsylvania

• 2 PEM projects (2018 & 2019)
• April 2020 spec lowered w/c ratio to 0.42
• Testing:
 o Shrinkage (bridge decks)
 o Resistivity
 o 4 SAMs
 o DOT plans to continue to evaluate the Box Test, resistivity, SAM
• Industry support for PEM
<table>
<thead>
<tr>
<th>State</th>
<th>Initiatives</th>
</tr>
</thead>
</table>
| Kansas | - Open house & shadow testing 2019
- Training Day – all DOT districts trained with SAM (2019)
- Considering requiring SAM in mix design for 2022
- Resistivity testing for 5 years
- Optimized aggregates for 10 years |
| Minnesota| - Have optimized aggregate gradation
- 0.40 max w/c ratio with incentives
- Interested in SAM training
- Purchased Phoenix water content equipment
- Open house in 2019, shadow project in 2020 |
| Michigan | - Considering SAM in mix design phase
- DOT purchased 19 SAMs
- Considering incentive for lower w/c ratios
- Optimized aggregates for > 20 years |
| Wisconsin| - SAM shadow testing in mix design phase (since 2017)
- Considering SAM for acceptance testing (2021)
- Incentive for aggregate gradation & cement reduction from 564 pcy to 520 pcy |
PEM and Sustainability

- 28-day mix design strengths are being met in 7 days
- 28-day mix design strengths are exceeded by more than 60%
- 56 to 90-day strengths exceed the 28-day mix design strength by more than 80%
- High cement content is nearly always the primary cause
- Negative impacts of high cement content:
 - Increased cracking potential
 - Higher permeability
 - Higher cost
 - Less workable concrete
 - Increased production of carbon dioxide

Observations From MCTC Data

- Move to performance-type specification language; eliminate mandatory cement content requirements
- Optimize aggregate gradation
- Use supplementary cementitious materials
- Use maturity testing to determine opening times
- Promote quality control in the plant to provide more consistent production

Ways to Reduce Cement Content

- Super Air Meter (SAM)
- Surface/Bulk Resistivity
- Maturity
- Box Test/V-Kelly
- Semi-adiabatic calorimeter
- Phoenix (fresh water content)
- MIT SCAN-T3
- MIT Dowel Scan
- HIPERPAV
- Optimized Gradation software
The contents of this presentation do not have the force and effect of law and are not meant to bind States in any way. This presentation is intended only to provide clarity regarding existing requirements under the law or agency policies.