

KANSAS CITY	For More Information	School of Computir and Engineering
Anti-lc	D., Kevern, J.T., Wang, H., Owusu-Ababio, S., and Shi, X. "Evaluating the ing Solutions on Concrete Durability," Wisconsin Highway Research Pr D-9/30/22.	
	P. and Kevern, J.T. "Evaluation of Penetrating Sealers for Concrete," lo rch Board, 01/01/19-12/31/21.	wa Highway
	P., Wang, K., and Kevern, J.T. "NCHRP 18-17 Entraining Air Void System le Highway Concrete," Transportation Research Board, 1/1/2017-03/31/19	
Applie	D., Kevern, J.T., Owusu-Ababio, and Schmitt, R. "Evaluation of Penetratin d to Saw Cut Faces in Concrete Pavement Joints," Wisconsin Highway m, 10/01/17 - 3/31/20.	
	ti, J. and Kevern, J.T. " Joint Sawing Practices and Effects on Durability ay Research Program, 11/1/2015 - 3/31/18.	," Wisconsir
	npany paid for any product names intentionally tionally mentioned in this presentation	

Sealer Type	Common Name(s)	Mechanism of action	Description
	Acylics and Vinyls	Physical barrier	Polymers or copolymers of acrylic acid
	Epoxies	Physical barrier ⁱ	Thermoset polymers
Continuous Film	Urethanes and Polyesters	Physical barrier iii	Reactive resins; Synthetic resins
	Linseed or soybean oil	Physical barrier; water repellent	Vegetable oils
	Stearates	Physical barrier; water repellent	Soaps or metallic salts from fatty acids
Pore Blocking	Sodium Tartrate; silica gel	Physical barrier	Absorptive crystalline structures
Pore Refining	Sodium/lithium silicate; colloidal silica	Pore size reduction	Silicon based with no organofunctional group
Pore Lining	Silane, Siloxane, XX Siliconates	Water repellent	Silicon based with organofunctional group(s)

				Contro			L
А	Absorption Day 8 Results: SME-PS			Absorp	Absorption Day 8 Results: Silane, water-based		
sq. ft. / gal	"Hurry"	"Regular"	"Double"	sq. ft. / gal	"Hurry"	"Regular"	"Double"
100	.89 mm	.98 mm	.53 mm	100	.42 mm	.58 mm	.19 mm
200	.89 mm	1.22 mm	.47 mm	200	.48 mm	.98 mm	.31 mm
400	1.27 mm	1.15 mm	.74 mm	400	.64 mm	1.32 mm	.36 mm
A	bsorption Day 8	Results: Raw L	iSi	Absorpti	on Day 8 Resu	llts: Silane, solve	nt-based
sq. ft. / gal	"Hurry"	"Regular"	"Double"	sq. ft. / gal	"Hurry"	"Regular"	"Double"
100	1.57 mm	1.40 mm	1.17 mm	100	.41 mm	.30 mm	.12 mm
200	1.36 mm	1.24 mm	1.24 mm	200	.51 mm	.64 mm	.19 mm
400	1.53 mm	1.32 mm	.91 mm	400	.49 mm	.41 mm	.28 mm

Tre atment	Final Degree of Saturation	Days to 85% Saturation	Lifespan Increase (x)
Untreated Control	100%	28	NA
40% silane applied after 7 days	62%	221	6.9
40% silane applied 30 min. after sawing	69%	210	6.5
10% Siloxane mixture applied after 7 days	89%	62	1.2
7% Siloxane mixture applied after 7 days	86%	84	2.0
SME-PS applied after 7 days	63%	279	9.0
hium Silicate mixture applied 30 min. after sawing	100%	10	-0.6
PAM applied 30 min. after sawing	100%	19	-0.3
	e piece, measurem		

	Classification	CV	0°	Treatment
	Hydrophilic	NA	NA	Control
	Hydrophobic	13%	76	LS
	Hydrophobic	19%	74	SC
	Over-hydrophobic	6%	105	40% silane
	Over-hydrophobic	15%	120	CaSt
	Hydrophobic	9%	83	Acrylic
	Over-hydrophobic	10%	100	SME

KANSA

Conclusions, Thoughts, and Recommendations

- A wide variety of chemicals and products exist which fall into the category of penetrating sealers.
- They DO NOT function along the same pathways, some are good early, some late, some good for deteriorated concrete, some terrible for certain concrete....meeting NCHRP 244 does NOT mean anything and real tests exist
- Absorption/Desorption; Desaturation; contact angle; chloride penetration should be the minimum...
- Corrosion initiation, scaling, 1D Freeze-thaw, and oxychloride could also be beneficial

Conclusions, Thoughts, and Recommendations

- The body of research strongly supports the use of penetrating sealers to improve deicer salt scaling and reduce chloride penetration on horizontal surfaces
- The value proposition, technology, and test methods are here
- However, penetrating sealers are not a panacea for bad concrete, make good concrete first, then make good concrete even better

About the Presenter

John T. Kevern, PhD, PE, FACI, LEED AP, Chair of the Department of Civil & Mechanical Engineering at the University of Missouri-Kansas City. He is an internationally recognized expert on pervious concrete, concrete durability, and non-traditional concrete applications. Dr. Kevern has been named one of the top five most influential people in the concrete industry by concrete construction magazine. He chairs AKM50 Advanced Concrete Materials and Characterization committee at the National Transportation Research Board.

John received his BS from the University of Wisconsin-Platteville and his MS and PhD degrees from Iowa State University.

Some of his current research topics include improving water quality using cement-based filters, improving concrete lifespan using hydrophobic coatings, internal curing concrete, techniques to reduce cost and improve performance of soil structures in sub-Saharan Africa, and eliminating joints in concrete pavements.

UNKC School of Computing and Engineering

