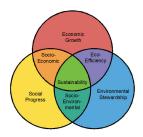
# Sustainability and Carbon Reduction in Iowa Concrete Pavements

National Concrete Pavement Technology Center Iowa's Lunch Hour Workshop In cooperation with the Iowa DOT & the Iowa Concrete Paving Association

**IOWA STATE UNIVERSITY** 

Institute for Transportation

Dan King, P.E. deking@iastate.edu Jerod Gross, P.E., LEED AP jgross@snyder-associates.com



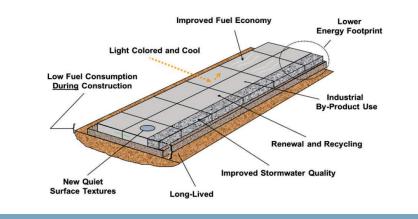

#### Road Map

- Sustainability and Concrete Pavements
- Reducing Concrete's Carbon Footprint
- Sustainable Practices in Iowa Today
- Future of Sustainable Concrete Pavements

#### What is Sustainability?

- "Development that meets the needs of the present without compromising the ability of future generations to meet their own needs"
- Categories
  - Economic
  - Environmental
  - Social




Sustainability and Concrete Pavements

# Why Concrete Sustainability?

- Not new raises bar for good engineering
  - Fly ash, etc.
- Demand by Public, FHWA, DOT
- Concrete is most-used building material because of versatility, economy, local availability, and longevity
- Emphasize technologies that increase pavement life and reduce energy intensive or environmentally damaging materials



## Sustainable Concrete Pavement Features



## Sustainable Concrete Pavement Design

More efficient designs
Avoid cut-and-paste
ME-Design procedure
Avoid replacing it
Longer lasting
Use existing equity of older pavements

Subgrade (Existing Soil)

## Sustainable Concrete Pavement Materials

- Use of local materials
- Beneficial reuse of industrial materials
  - Fly ash & slag
- Enhanced durability

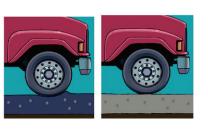


## **Durability and Concrete Pavement Sustainability**

- Environmental savings of longlife pavements
  - Less frequent reconstruction
  - Less consumption of raw materials
  - Less energy in the use phase



I-80 Adair Co. Built 1979 - Diamond Grind 2020

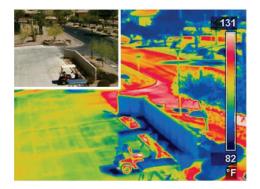

#### Concrete Pavement Sustainability in the Use Phase

- Traffic using the pavement has the biggest impact on the environment
  - · The "use phase"
- Pavement type has a significant effect on environmental impact over the life cycle



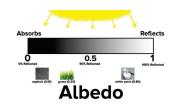
#### Concrete Pavements and Fuel Consumption

- Rigid surface = lower deflection
- In-depth study by NRC Canada<sup>1</sup>
  - Reduction in fuel consumption for trucks of 0.8% to 6.9%
- Modeling by MIT found similar results<sup>2</sup>
- Further study on I-95 in Florida<sup>3</sup>
  - Fuel consumption reduced 3.2% to 4.5%



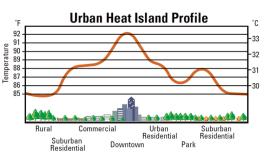

<u>Inttps://hvttforum.org/wp-content/uploads/2019/11/Effects-of-Pavement</u> <u>Structure-on-Vehicle-Fuel-Efficiency-Taylor.pdf</u> <u>?https://news.mit.edu/2020/stiffer-roadways-improve-truck-efficiency-</u>

emissions-0611


<sup>3</sup>https://cshub.mit.edu/sites/default/files/documents/Comparison%200f%20 Fuel%20Consumption%20on%20Rigid%20versus%20Flexible%20Pavements%20072713....pdf

#### Concrete Pavements and Albedo/Reflectance



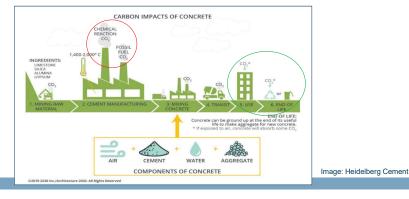

<sup>1</sup>https://www.sciencefriday.com/educational-resources/the-albedo-effecturban-heat-islands-and-cooling-down-your-playground/

- Lighter, more reflective surface
  - Increased visibility
  - Reduced lighting demand
  - Mitigation of urban heat island effects<sup>1</sup>



# Concrete Pavements and the Urban Heat Island

- MIT study of Boston and Phoenix published in 2021<sup>1</sup>
- Cool pavement strategies could offset greenhouse gas (GHG) emissions by
  - 1.0 to 3.0% in Boston
  - 0.7 to 6.0% in Phoenix
- Reduced demand for A/C and generation of electricity




https://pubs.acs.org/doi/full/10.1021/acs.est.1c00664#

# Reducing Concrete's Carbon Footprint

#### Reducing Concrete's Carbon Footprint

• The concrete and cement industries around the world are working to reduce their CO<sub>2</sub> emissions and carbon footprint



#### Clinker – Portland Cement – Concrete

- Cement clinker produced from burning limestone, clay, etc
- R

Portland cement is ground clinker





# Where Does the Carbon Come From?

- Heat! (about 40%)
  - Cement ingredients heated to ~1400°C
  - Dry processing reduces energy needed
  - Heat exchangers improve efficiency
  - Alternative fuels
- · Chemistry (the rest)
  - $CaCO_3 \rightarrow CaO + CO_2$
  - CaO + other stuff  $\rightarrow$  portland cement
  - Can we use alternative calcium sources?
- $\ensuremath{^\circ}$  Most of the  $\ensuremath{\text{CO}_2}$  footprint is tied to the cementitious system



## How to Reduce Concrete's Carbon Footprint

- Reduce or capture CO<sub>2</sub> emissions from clinker and Portland cement production
- · Use blended cements to reduce the amount of clinker in cements
- Use SCMs to reduce the amount of Portland cement in the cementitious blend
- Optimize mix designs to reduce the total amount of cementitious material in the mix while still getting strength and durability
- Reduce emissions from concrete production and construction
- Big picture goal: carbon neutral concrete by 2050

#### The Cement Institute

## **Cement Clinker**

- Modern cement plants more efficient
- Efficiency at plant
  - Preheaters
  - Shorter kiln
- Alternative fuels
- Use of alternative materials



# **Portland Cement**

- Clinker is ground with gypsum to produce Portland cement
- Blended cements (IS, IP & IL) increase cement supply per ton of clinker
  - IS = slag, IP = pozzolans (fly ash), IL = limestone
  - We have used Type IS & IP cements since 1995 in Iowa
  - Type IL is in the process of becoming the new standard cement today



#### Methods for Sustainable Concrete Pavement

## Carbonation and CO<sub>2</sub> Absorption

 Portland Cement ~10-12% of Concrete CO<sub>2</sub> in the atmosphere reacts with Volume  $Ca(OH)_2$  in concrete to produce calcium carbonate ( $CaCO_{2}$ ) Reduce Cement Content in Pavement In US, concrete pavements can absorb Enough paste to fill the gaps between about 5.8 million tons of CO<sub>2</sub> over the the aggregate, plus a bit for workability next 30 years<sup>1</sup> • PEM, well graded aggregate a) Helps offset CO<sub>2</sub> emitted during Reduce Portland Cement in Binder production of cement<sup>2</sup> CO Use of SCM's · Could help even more if crushed and re-33 Carbonat used at end of pavement life Type IP & IS cement https://cshub.mit.edu/sites/default/files/images/0120% Ca(OH) Type IL Cement 20Carbon%20Uptake%20Brief.pdf <sup>2</sup>https://news.mit.edu/2021/unravelling-carbon-uptake-CO<sub>2</sub> + Ca(OH)<sub>2</sub> → CaCO<sub>3</sub> + H<sub>2</sub>O concrete-pavements-0126

#### Iowa's History of Sustainable Concrete Practices

Concrete surfac

CaCO

- 1984 Fly ash used to reduce Portland cement 15% by weight
- 1995 Blended cements approved: Type IP and IS
- 1995 Approved use of slag as Portland cement replacement
- 1999 Introduction of well-graded mixes into QM-C spec (Shilstone Chart)
- 2013 Approved use of Type IL Blended cements Two Sources Approved 2021 – Approved several more sources.
- 2018 Performance Engineered Mix (PEM) design and testing National pooled fund study headed by National CP Tech Center
- 2021 CarbonCure Two ready mix plants Iowa City and Des Moines
  - Inject CO2 into concrete mix
  - Reduce Portland cement by 3%

## Sustainable Practices in Iowa Today

#### Sustainable Practices in Iowa Today

# **Optimizing Cement Content**

- Big picture goal: carbon neutral concrete by 2050
- What new is happening in lowa today?
  - Optimizing cement content
  - Ternary mixes
  - Type IL cement
  - CarbonCure
  - SCMs



- Performance Engineered Mixtures (PEM): designing concrete to survive the environment
  - Concrete durability is the most important design goal
  - Use as much cement as you need for strength, but no more
  - Optimized gradation and cement content: QM-C and C-SUD mixes



West Des Moines (2015)

# **Optimizing Cement Content**



- PEM national pooled fund study led by Iowa
- Utilizing PEM test methods to validate mix design with reduced cement content
- Able to produce workable mix with better smoothness and reduced cement content to 499 lbs/cy
  - A reduction of 60 lbs compared to QM-C and C-SUD mixes

## **Ternary Mixes**

- Ternary Mixes blended cement + fly ash or Portland cement + fly ash + slag
- Pavements in Iowa: Type IS, IP, & IL
  - Up to 40% replacement of Portland Cement (~224 lbs)
  - >15,000,000 yd2 ( >1,000 2 lane miles)
- HPC Structures
  - Up to 50% replacement of Portland Cement (~312 lbs)



# Type IL (Portland Limestone Cement)

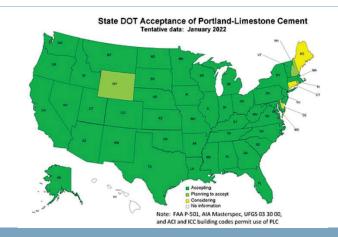
# Type IL (Portland Limestone Cement)

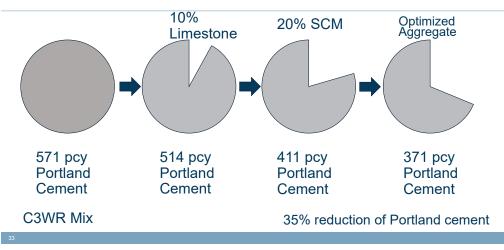
- Typical Type I/II already has ~5% limestone addition
- Portland Limestone Cements
  - Up to 15% ground limestone
  - Similar performance
  - Will become the normal cement in 2022
- Type IS cements will become Type IT (S20)(L10)
- Reduces carbon footprint of concrete



- When limestone is over 15%decreased strength & setting time
- increased heat of hydration
- increased permeability
- higher absorption and chloride diffusion
- greater carbonation
- no significant difference in salt scaling as long as similar/proper air void contents are maintained

| PCARD DIDITA<br>State-of-the-Art Report on<br>Use of Limestone in Cements at<br>Levels of up to 15%<br>Wy P. D. Tennik N. D. A. Thomak and W. J. Water<br>Market State-of-the-Art Report on<br>Use of Limestone in Cements and<br>Water<br>Market State-of-the-Art Report on<br>Use of Limestone in Cements and<br>Water<br>Market State-of-the-Art Report on<br>Use of Limestone in Cements and<br>Water<br>Market State-of-the-Art Report on<br>Use of Limestone in Cements at<br>Use of Lim | PCA. | Research & Development Information                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------|
| Use of Limestone in Cements at<br>Levels of up to 15%<br>by P. D. Tewis, N. D. A. Tionia, and W. J. Weiss<br>"excession of the second sec                                                                                                                            |      | PCA R6D SN3148                                    |
| Promotion formation of the second sec                                                                                                                                     | ,    | Use of Limestone in Cements at                    |
| Evals corrected Destancer 2014.<br>All rights reserved<br>asis chronol/0071001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | by P. D. Tennis, M. D. A. Thomas, and W. J. Weiss |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                   |


#### Jamie Farny, PCA


## Type IL (Portland Limestone Cement)

- First trials in Iowa were done in 2013
  - Performance was roughly equivalent to standard Type I cement
  - Approved by Iowa DOT since that time
- In 2022, Type IL mixes should become the standard cement available in Iowa (and across most of the U.S.)

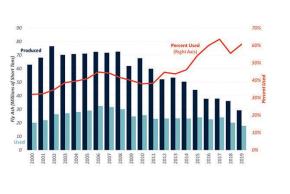


# Type IL (Portland Limestone Cement)





# Carbon Reduction by Reducing Cement


# Carbon Sequestration and Reduced Cement Content

- CarbonCure system has been implemented in several ready mix plants in lowa
- Waste CO<sub>2</sub> (12-24 oz per cy) is injected directly into the mix, which immediately mineralizes into solid calcium carbonate (CaCO<sub>3</sub>)
- Improves concrete strength
  - Allows for 3% reduction in cement content (about 15 lbs/cy)



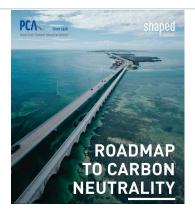
#### Supplementary Cementitious Materials

- SCMs like fly ash are a timetested way to...
  - Improve concrete durability
  - Find a use for industrial byproducts
  - Reduce the carbon footprint of concrete
- Retirement of coal fired power plants and conversion to natural gas is poised to reduce fly ash supply

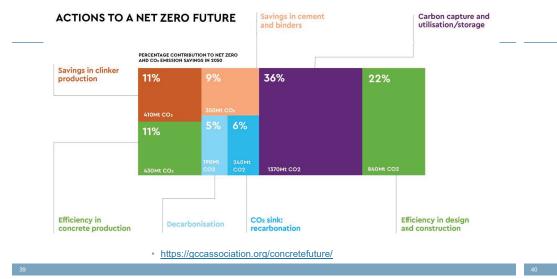


# Supplementary Cementitious Materials

• Future – harvested fly ash from landfilled sources


https://intrans.iastate.edu/app/uploads/202 0/09/use\_of\_harvested\_fly\_ash\_TB.pdf

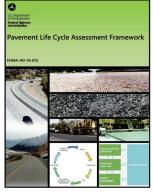



#### Concrete Pavement Sustainability – Future

- Cement companies committed to carbon neutrality by 2050
  - Decarbonated materials
  - Alternate fuels
  - Carbon capture & storage (CCS)
  - Efficiencies
  - New cements



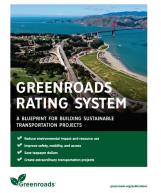



https://www.cement.org/sustainability/roadmap-to-carbon-neutrality



Future of Sustainable Concrete Pavements

#### Assessing Pavement Sustainability


- Economic impacts are often assessed separately through life-cycle cost analysis (LCCA).
- Environmental impacts can be examined through a life-cycle assessment (LCA)



https://www.fhwa.dot.gov/pavement/sustainability/hif16014.pdf

# Measuring Pavement Sustainability

- Greenroads rating system
- Environmental Product Declarations (EPDs)
  - Communicates the environmental performance or impact of any product or material over its lifetime.



https://www.greenroads.org/

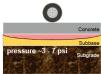
# Low-Carbon Cements

- Geopolymer cements / Activated fly ashes
- Calcium sulfo-alumina-cements (CSA)
- Belite cements
- Other chemistries



• Balancing cost, constructability and longevity...

# Low-Carbon Cements


- Test sections being planned at MNRoad
  - Assess CO<sub>2</sub> savings
  - Measure performance under traffic
  - 16 sections
    - Control and optimized mixtures
    - · Harvested fly ashes
    - Geopolymers
    - Carbon injection
    - Innovative SCMs



#### Resilience

- A resilient pavement system is sustainable
  - Reduced waste if not damaged or destroyed, it does not need to be replaced or rehabilitated
- Flooding has major impacts on pavement foundations
  - Inundation of subgrade and subbase layers reduces strength
  - Concrete pavements are not as sensitive to underlying layer stiffness<sup>1</sup>





1https://intrans.iastate.edu/app/uploads/sites/7/2020/09/2Mack Resilency\_handout.pdf

## Resilience

# I-680 Pottawattamie County Missouri River flooding

- Concrete pavement with Flexamat shouldering increased resiliency
- Opened within two weeks after flooding again



#### Concrete Pavement Sustainability – Renewal

- Preventive maintenance techniquespatching, joint sealing, DBR, and diamond grinding
- Employ right fix at right time to maintain pavement in a good condition
- Cost effective and reduce life cycle
   environmental impact



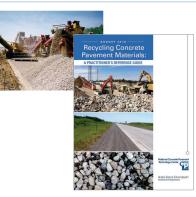
#### **Concrete Pavement - Renewability**

- Concrete Pavement Restoration
- Diamond Grinding
   Improve ride and fuel mileage



#### **Concrete Pavement - Renewability**

#### **Concrete Overlays**


- Use less raw material
- Uses existing structure
- Structural fibers
- Adds structure and improves ride
- Extend life of pavement with less disruption



# Concrete Pavement Sustainability - End of Life

#### Conclusion

- Ultimate goal of recycling is to achieve a zero waste stream
- Use all byproduct materials encountered in the rehabilitation or reconstruction of a concrete pavement.
- "Cradle to Cradle" instead of "Cradle to Grave"



Recycling Concrete Pavement Materials: A Practitioner's Reference Guide (iastate.edu)

- Concrete pavement sustainability in Iowa has been accomplished utilizing fly ash and blended cements for several decades
- QM-C, C-SUD, and new PEM mix designs reduce cement content and improve long term durability
- Cement companies will continue to take measures to reduce CO<sub>2</sub> emissions and produce other blends to lower their carbon footprint



