Resistivity Testing

What do I need to know? How do I use it?

April 28th, 2022

Jason Weiss, Edwards Distinguished Professor **Oregon State University**

JTRP Testing - January 2013

Why do we want electrical resistivity?

• On its own- We don't (generally)

What is Transport

Drying processes

• Fluid movement in concrete:

• Permeation (flow due to pressure)

• Ion Diffusion (concentration) Sorption (wetting events)

• Wicking (combination of others)

• What is transport?

Why do we want resistivity?

- It's a fast indirect measure of durability
- Specifically it's a measure of transport
- Great quality control measure as well

Photo 69694225 / Concrete © Satakorn | Dreamstime.com

Looking to reduce Soprano style pores

• Transport is driven by pore solution volume and connectivity

In History, New Ideas Come Forward

- In 1515 Copernicus proposed that the earth was a planet that circled the sun
- He waited till 1543 to publish this but was largely seen as a heretic
- Bruno was burned at the stake for teaching of a heliocentric world
- Galileo house arrest

Photo 89780342 © Lukasz Janyst | Dreamstime.com

Background - Ohms Law

- German Physicist and Mathematician
- Found that there is a proportionality between:
 - potential difference (voltage, V) and
 - resulting current (I)
- The proportionality constant is what we call electrical resistance (R)

V = I R

• In 1827 "The Galvanic Circuit Investigated Mathematically" received 'cold reception'

George Ohm

Ohms Law was Discovered by

- Henry Cavendish (1731-1810)
- Solitary, Eccentric, Shy
- Many folks today believe he was autistic (Asperger)
- The bulk of his work was not known until James Clerk Maxwell did a review in 1879 (He was het first Cavendish Professor a Cambridge)

· It is worth noting that Ohm was studying this along with mechanical response and heat transfer

Henry Cavendish

Resistance, Resistivity, and Geometry

- Analogy to Mechanics
- However stiffness is not a material

$$F = K\delta$$

- property
- Rather Modulus

Resistance, Resistivity, and Geometry

- Analogy to Mechanics
- $F = K\delta$ However stiffness is not a material property
- Rather Modulus

• Ohms Law

V = RI

- However resistance is not a material property
- Rather resistivity

Why Does this Matter

- Simply said electrical resistivity is a fundamental property of a material that measures how strongly it resists electric current.
 - It is independent of geometry (we will come back to this)
 - It is the inverse of conductivity

• Silver 1.59 x 10⁻⁸ ohm m; Quartz 7.5 x 10¹⁷ ohm m

What is Concrete

- Water
- Admixtures
- Cement
- SCM
- Air
- Sand

Rock

What is Concrete viewed Electrically

- Three Phases (Rajabipour 2006)
 - Solid 10⁹ ohm-m (Aggregate, cement, CSH)
 - Liquid 0.05 to 1 ohm-m (Pore fluid)
 - Gas 1015 ohm-m (Vapor and air phases)

Flow of electricity is essentially ionic and through material's liquid phase

Temperature and Maturity

 Conductivity is a function of Maturity (hydration) and Temperature (conductivity)

$$\begin{split} \sigma(t) &= f(M) \cdot f(T) \\ f(M) &= \int\limits_0^t \exp \left[\frac{E_{aR}}{R} \cdot \left(\frac{1}{T} - \frac{1}{T_{REF}} \right) \right] \cdot dt \\ f(T) &= \frac{\sigma(T)}{\exp \left(-\frac{E_{aC}}{R} \cdot \left(\frac{1}{T} - \frac{1}{T_{REF}} \right) \right)} \\ &= \mathop{\rm E_{aR}} = 39.50 \; {\rm KJ/mole} \end{split}$$

W/C = 0.30 + 5%SRA Conductivity (10-3 S/m) 30 Temperature (°C)

How Do we Test - Geometry

- Three Geometries
 - Uniaxial (Bulk)
 - Surface
 - Embedded Probes

Resistivity - From Bulk Measures

- Measures from end plate to end plate
- Uses conductive sponges that can be accounted for
- Least sensitive to surface curing or leaching
- Probes the largest volume of the sample

$$\rho = \frac{V}{I} \frac{A}{L} = \frac{RA}{L}$$

Resistivity - From Surface Measures

- Measures Between Pins
- Requires 8 measurements
- Moderately sensitive to surface curing or leaching

Resistivity - Embedded probes

- Individual geometry correction factors
- A lot of times sealed samples
- Will be the direction sensors move

When to Perform the Test

- In solution, we need to have atleast 7 days to allow the solutions to try to equilibrate
- It can be required at any time (generally 28 days (56 and 91 are used)
- For SCM
 - We want later age data when possible
 - This should not be 'matchy-matchy' (28d accelrated vs 91d)
 - This was based on one sided accelerated 28 day testing to get atleast 91 day

• Sealed can be continual (huge benefit) Photo 28676185 © Andreykuzmin | Dreamstime.com

When Does it Matter (Testing Age)

- We can set criteria at any age ... in concept
- What we really want is to know how the concrete will resist transport at later ages 3 mos.
- That said there is a contract time issue to get information back to contractors
- We have proposed a master curve and check to that curve as one approach

Illustration 101926093 © Ernest Akayeu | Dreamstime.com

What do the Numbers Mean

- Many folks have experience with the RCPT test
- We typically measure the charge passed (Q) at 6 hours
- The first column of this table is very familiar
- The second column can be directly calculated (painful detail shown above)

	hr	6 hr	6 hr	
Q =	$\int I dt =$	$\int_{R}^{R} \frac{V}{R} dt =$	$\int \frac{VA}{\rho L}$	dt
0.7	r = 0	hr	0 hr	6,830 V m s
$Q = V \frac{A}{L} t \frac{1}{\rho} =$	= 60 <i>V</i> 50.8	$\frac{1}{mm}$ 21,600	s = -	ρ

Weiss et al. 2016

ASTM C1202 Classification ¹	Charge Passed (Coulombs) ¹	Resistivity (kOhm·cm) ²	
High	>4,000	< 5.2	
Moderate	2,000-4,000	5.2-10.4	
Low	1,000-2,000	10.4-20.7	
Very low	100-1,000	20.7-207	
Negligible	<100	>207	

From ASTM C1202-12. ²Calculated using first principles.

Spragg et al. 2013

Review of Empirical RCPT vs Resistivity Data

- The black line is theory
- The data from literature is shown as the colored lines
- You will see that these vary from theory and it is our 'thought' that this is due to the sample preparation

What can you control - Increasing resistivity

- If you have a low water content ϕ decreases
- If you have less paste ϕ decreases
- If you have a lower w/cm or dense SCM $-\beta$ decreases

$$ho_{Total}^{}=rac{
ho_{Liquid}^{}}{\phi_{Liquid}^{}eta_{Liquid}^{}}=rac{
ho_{Pore\ Soln}^{}}{\phi_{Pore\ Soln}^{}eta_{Pore\ Soln}^{}}$$

istivity Webinar © Jason Weiss, Jason.Weiss@oregonsta

CU4- 24 -6 45

Leaching - Alkali and CH

- Many people think of CH leaching; however, alkali (Na+, K+) can also leach.
- As a result the solution becomes less conductive and more resistive and this changes the measured response
- As a result, resistivity changes but the porosity and connectivity do not
- This is why the results change when one stores samples in water or in pore solution

et al Stide 27 of 45

What can you control - Increasing resistivity

- If you have a low water content ϕ decreases
- If you have a lower w/cm $-\beta$ decreases
- If you leach alkalis ρ_{ps} increases (but this is not a material measure it's a testing artifact)

$$ho_{Total} = rac{
ho_{Liquid}}{oldsymbol{\emptyset}_{Liquid}eta_{Liquid}} = rac{
ho_{Pore\ Soln}}{oldsymbol{\emptyset}_{Pore\ Soln}eta_{Pore\ Soln}}$$

PFM Resistivity Webinar

Jason Weiss, Jason.Weiss@oregonstate.edu

Slide 28 of 45

PFM Resistivity Wehin

Jason Weiss, Jason.Weiss@oregonstate.edu

The Number one Issue Air 6+/-1 %, Water +/-3 gal, β 0.2 The = $\frac{\rho_{Total}}{\rho_{Soln}} = \frac{1}{\phi_{Pore Soln}\beta_{Pore Soln}}$ Air 6+/-1 %, Water +/-3 gal, β 0.2 The = $\frac{\rho_{Total}}{\rho_{Soln}} = \frac{1}{\phi_{Pore Soln}\beta_{Pore Soln}}$ Attps://www.gardenstateconcrete.net/post/2016/10/10/adding-water-to-concrete-on-the-jobsite

Additional Item

- Many folks are 'correcting' for pore solution but not fully doing this correctly
- This really needs to be addressed
- We need to follow standards

PEM Resistivity Webina

Jason Weiss, Jason.Weiss@oregonstate.edu

Slide 37 of 45

Conclusion

- Resistivity is a great tool for quality control and durability
- It is impacted by:
 - Test Geometry and Parameters -Geometry, signal (frequency/shape)
 - Mixture Characteristics Pore volume, Pore connectivity, Pore Composition,
 - Sample Conditioning Leaching, DOS, Temperature,
- However following directions in standards reduces these influences

Photo 34613323 © George Kroll | Dreamstime.com

PEM Resistivity Webina

son Weiss, Jason.Weiss@oregonstate.edu

Clide 20 of 4

Conclusion

- Standard Curing, Conditioning and Testing Procedures
 - Uniaxial TP 119 Option A
 - Surface T 358 Conditioning
- Curing and conditioning are two steps
- How do we design mixtures for good resistivity numbers The same way we design good concrete mixtures
 - Medium/low w/cm with SCM
 - Low paste content (but not too low)

PFM Resistivity Wehina

© Jason Weiss, Jason.Weiss@oregonstate.edu

Slide 39 of 45