

8

ttps://architecture2030.org/ipcc_analysis/

Use Less Binder in the Concrete

- Cementitious binder is about 9-15% by mass of concrete
- Many specifications call out a minimum
 - That may be more than needed

Use Less Binder in the Concrete

- Minimum required is defined by
 - Enough paste to fill the gaps between the aggregate, plus a bit
 - Aggregate gradation
 - Workability
- Excess can be deleterious
- Performance Engineered Mixtures
 Some states are reporting cutting binder contents by 30%

Use Less Cement in the Binder

- Supplementary cementitious materials
 - Enhance performance
 - Increase longevity
 - Reduce disposal headaches
 - Ternary combinations
 - What about their carbon footprint?

Use Less Cement in the Binder

- Supplementary cementitious materials
 - Availability locally?
 - · Harvested fly ash

Use Less Cement in the Binder

- Other SCMs
 - Recycled Ground Glass, ASTM C1866
 - Locally processed waste products
 - · Cost of testing compared with value of product

Use Less Cement in the Binder

- Portland Limestone Cements
 - Up to 15% ground limestone
 - Similar performance
 - · Becoming the norm

Reduce Carbon Footprint of Cement

• PCA has a plan...

Replace raw materials with	Using decarbonated materials eliminates CO ₂ emissions from processing				
decarbonated materials	traditional raw materials, like limestone.				
Use alternative fuels	Replacing traditional fossil fuels with biomass and waste-derived fuels lowers greenhouse gas IGHGI emissions and keeps materials out of landfill				
Continue efficiency improvements	Increasing energy efficiency reduces the amount of CDs emitted for each ton of product.				
Implement carbon capture, utilization, and storage (CCUS) technology	CCUS directly avoids a significant portion of coment manufacturing emissions.				
Promote new cement mixes	Creating new coments using existing and even alternative materials reduces emissions from mining for new materials, while optimizing the amount of clinker used ensures emissions correspond to necessary production.				
Increase use of portland-limestone cement (PLC)	As an existing lower-carbon blend, universal acceptance of PLC will reduce clinker consumption and decrease emissions.				
CONSTR	UCTION: DESIGNING AND BUILDING				
Optimize concrete mixes	Considering the specific needs of the construction project and using o the materials necessary, avoiding excess emissions.				
Use renewable fuels	Switching to solar, wind and other renewable sources of energy directly reduces emissions from other energy sources.				
Increase the use of recycled materials	Diverting these materials from landfills.				
Avoid overdesign and leverage construction technologies	Designing for the specific needs of the construction project reduces unnecessary overproduction and emissions; incorporating just-in-time deliveries.				
Educate design and construction community	Improve design and specifications to be more performance oriented which will permit innovation in coment and concrite manufacturing. Encourage the use of advanced technologies to improve structural performance, energy efficiency, resiliency, and carbon sequestration.				
EVERYDAY	CONCRETE INFRASTRUCTURE IN USE				
Incentivize energy efficient buildings	Increasing buildings' energy efficiency can cut energy use and resulting emissions from heating and cooling.				
Reduce vehicle emissions by improving fuel efficiency	Because of its rigidity, concrete pavements enhance the fuel efficiency of vehicles driving over them, reducing vehicle emissions.				
Decreased maintenance	Due to their durability, concrete structures (buildings, pavements, bridges, dams, etc.) last longer and require less frequent maintenance.				
Recycling	Concrete in place can be 100% recycled, limiting the use of raw materials and production emissions.				
Carbonation	Every exposed concrete surface absorbs CD ₂ and over the course of its service life, a building can reabsorb 10% of cement and concrete production emissions.				

Use Low-Carbon Cements

- Geopolymer cements / Activated fly ashes
- Calcium sulfo-alumina-cements
- Belite cements
- Other chemistries
- Balancing availability, cost, constructability and longevity...

Use Low-Carbon Cements

- Test sections being planned at MNRoad
 - Assess CO₂ savings
 - Measure performance under traffic
 - 16 sections
 - Control and optimized mixtures
 - Reclaimed fly ashes
 - Geopolymers
 - Carbon injection
 - Innovative SCMs

Other Actions

- Recycled Concrete
 - Reduces need for virgin materials
 - Eliminates disposal needs
 - Foundation or in the concrete?
 - Depends on quality needs
 - About 140 Million Tons recycled annually

Recycled Concrete Aggregate

Technical products developed:

- How to engineer RCA applications
- Use RCA in most advantageous way

Coming soon

- Construction by-products
- RCA in pavement mixtures
- Industrial by-products

Put the Carbon Back!

Natural carbonation

- Slow
- Dependent on environment
- Can compromise steel protection
- Can be accelerated with grinding

Put the Carbon Back!

Use Phase

- Inject carbon dioxide into concrete in the mixer
- CO₂ is mineralized then converts to solid CaCO₃
- Reported to improve permeability

CarbonCure

Measurement

• Life-cycle assessment (LCA)

Fuel consumption

Care and keeping

MIT CSHub

Measurement

• EPDs are coming

		Minimum	Maximum	3001- 4000-00- FA/SL	3001- 4000-20- FA	3001- 4000-30- FA	3001- 4000-40- FA	3001- 4000-30- SL	3001- 4000-40- SL	3001- 4000-50- SL	6001- 8000-50- FA/SL
Core Ma	ndatory Impact I	ndicators									
GWP	kg CO₂e	261.19	426.75	426.75	365.48	332.37	297.41	327.67	294.65	261.62	261.19
ODP	kg CFC11e	7.84E-06	1.11E-05	1.11E-05	9.56E-06	8.73E-06	7.84E-06	1.01E-05	9.75E-06	9.41E-06	8.49E-06
AP	kg SO₂e	0.99	1.33	1.33	1.17	1.08	0.99	1.28	1.26	1.25	1.12
EP	kg Ne	0.37	0.55	0.55	0.48	0.44	0.40	0.45	0.41	0.38	0.3
POCP	kg O₃e	21.38	28.22	28.22	24.98	23.23	21.38	25.58	24.70	23.82	22.20
ADPf	MJ, NCV	1,522.19	2,229.70	2,229.70	1,921.20	1,754.51	1,578.49	1,850.63	1,724.28	1,597.92	1,522.19
ADPe	kg Sbe	2.44E-04	3.69E-04	3.69E-04	3.25E-04	3.02E-04	2.77E-04	2.94E-04	2.69E-04	2.44E-04	2.46E-0
FFD	MJ Surplus	143.16	180.58	180.58	162.85	153.28	143.16	172.58	169.91	167.24	154.43

Construction	Other Factors				
<list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>	<text><list-item><list-item><list-item><text></text></list-item></list-item></list-item></text>				
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>				

PCA Stages of Opportunities for **Reducing GHG Emissions & Increasing Concrete Pavement Increasing Sustainability** Sustainability while Improving Durability: • Before Construction Colorado's Experience ROADMAP • During Construction TO CARBON • After Construction NEUTRALIT Angela Folkestad, P.E. A more sustainable world i Shaped by Concret ShapedByConcrete.com CO/WY Chapter – American Concrete Pavement Association CLINKER CEMENT CONCRETE CONSTRUCTION CARBONATION Count on Concrete is Key chemically The binder Critically useful Service life / reactive ingredient material to society use phase impacts a CO2 sink

Reducing Emissions Before & During Construction

- Pavement Design
- Materials Selection and Mixture Design Specifications
 - Aggregates
 - Multiple gradations
 - Recycled concrete
 - Cementitious Materials
 - Portland Limestone Cement (PLC), or Type IL
 - Supplementary cementitious materials

Most common target of discussion based on cement's reputation as a large producer of greenhouse gas emissions

CDOT Concrete Pavement Minimum Cementitious Contents

Portland Limestone Cement (PLC) – AKA Type IL

Blended cement with higher limestone content & average reduction in carbon footprint of 10% www.greenercement.com

Portland cement can contain up to 5% limestone along with the clinker

Portland-limestone cement can contain from 5% to 15% limestone along with the clinker.

If all cement used in the U.S. in 2019 had been converted to PLC (Type IL), it would have reduced CO_2 emissions by 8.1 million metric tons, which the U.S. EPA says is the equivalent of taking 1.75 million cars off the road for an entire year.

Why Portland Limestone Cement (PLC)?

- Producing PLC reduces amount of cement clinker needed per ton
 A Badwase sorter footstrict of armost (approximate)
 - Reduces carbon footprint of cement/concrete
 - Every 10 tons of PLC produced reduces CO_2 emissions by approximately 1 ton compared to OPC
 - Reduces the amount of energy required per ton of cement
- Producing PLC increases cement plant capacity
 - Varies from plant to plant depending on clinker capacity vs. mill capacity
- Designed to perform the same as Ordinary Portland Cement (OPC)
 - Water demand may be slightly higher due to fineness
 - Early strengths may be higher
 - Set time should be equal
 - Color is slightly lighter

CDOT Specifications – PLC allowed since 2008

- ASTM C1157 GU used initially
- ASTM C595 Type IL introduced in fall 2014

1st CDOT Paving Project w/ PLC US 287 (Ports to Plains route) in eastern CO

Documenting PLC Testing, Use & Performance

1st CDOT PLC Project @ 11 years old (2019)

1,500 Lane-Miles of Concrete Pavement w/ PLC

US 36 Denver to Boulder

C-470 – SW Denver

Pena Blvd – Access to DEN

Dramatically reduces truck trips & related emissions

On-Site Aggregate Mining & Concrete Batching

Recycled Aggregate Base

Concrete Mix Specifications: Use Performance Engineered Mixtures (PEM)

- Optimized gradations reduces paste content (and cement)
- Recycled concrete
 - Aggregate in new concrete
 - Base material
- Allow for Portland Limestone Cement (PLC) aka Type IL
- Require use of supplementary cementitious materials
 - Fly ash byproduct of coal fired power production
 - Slag cement byproduct of steel production
- Include permeability testing

Specification References

- Colorado DOT: <u>https://www.codot.gov/business/designsupport/cdot-construction-specifications/2021-construction-specifications/2021-specs-book</u>
 - Section 412 Concrete Pavement
 - Section 601 Structural Concrete (Class P is for Pavement)
- Municipal Government Pavement Engineers Council: <u>http://www.mgpec.org/mgpec-specifications.html</u>
 - Item 30 Portland Cement Concrete Materials

Environmental Product Declarations (EPDs) Why are we talking about them in CO?

- HB 21-1303 signed & incorporated into C.R.S. 24-92 in July '21
 24-92-117 Office of the State Architect
 24-92-118 Colorado Department of Transportation
- Requires CDOT to begin collecting EPDs per ISO 14025 on eligible projects for certain eligible materials
- CDOT must use collected EPDs to develop a policy establishing maximum Greenhouse Gas emissions for each eligible material
- CDOT working out details of exceptions to EPD submittal will be outlined in the final "Buy Clean Colorado" Specification.

Reducing Gate to Grave Impacts

- Pavement preservation/restoration
 - Extend life of pavement
 - Minimize disruption & maximize resource efficiency w/ negligible resource extraction
 - Utilize numerous techniques including diamond grinding

Reducing Gate to Grave Impacts

Concrete overlays as preservation

- Resource efficient & eliminates disposal
- Cost effective & quick to construct
- Long life

Thank You!

Dr. Peter Taylor, P.E., FACI Concrete Pavement Tech Center <u>ptaylor@iastate.edu</u>

Angela Folkestad, P.E. CO/WY Chapter – ACPA <u>afolkestad@pavement.com</u>

