

Design and Construction of Sustainable Concrete Pavements in Desert Environments

Our workshop objectives

- 1. Share knowledge about recent research and best practices for concrete pavements.
- 2. Provide guidance for improving the outcomes of concrete pavement projects in desert climates.
- 3. Provide a forum for sharing pavement project successes and challenges.

Design and Construction of Sustainable Concrete Pavements in Desert Environments

1.	Concrete Mixtures for Pavement – This session will present the "How's & Why's" of specifying and proportioning cements, SCMs, admixtures, and aggregates for desert pavements. Peter Taylor, CP Tech Center	Tuesday, April 19 th 9:00 to 10:15 am
	Pavement Design and Critical Properties – Designing and specifying pavements for desert environments requires a solid understanding of how design relates to placement and performance. Tom Van Dam, NCE	Tuesday, April 26 th 9:00 to 10:15 am
3.	Concrete Pavement Inspection and Testing – Pavement quality is controlled through comprehensive inspection and testing requirements. Desert environments present added paving risks that should be accounted for. Mike Praul, FHWA	Tuesday, May 10 th 9:00 to 10:15 am
4.	Pavement Construction and Performance – Successful paving in desert environments requires attention to key construction processes. Pavement condition data indicates excellent performance in desert environments. Angel Mateos, UCPRC; Dave Rath, Southwest Concrete Paving Company; and Matt Fonte, Fonte & Company	Tuesday, May 24 th 9:00 to 10:15 am

Thank You to our Workshop Supporters

Our Presenter Today

Peter Taylor, Ph.D., P.E Director, Concrete Pavement Technology Center

Dr. Taylor leads internationally recognized research at the National Concrete Pavement Technology Center. His highimpact work has resulted in the development of specifications such as the AASHTO PP 84: "Developing Performance Engineered Concrete Pavement Mixtures.".

Additionally, his research has helped transportation agencies save millions of dollars by preventing premature joint failures, and improving the performance of concrete mixtures.

Design and Construction of Sustainable Concrete Pavements in Desert Environments

Session 1: Concrete Mixtures for Pavements

Dr Peter Taylor

National Concrete Pavement Technology Center

Tech Cente

Mixtures for Desert Environments

- What's special about the desert
- Materials
- Mixture

What's special about the desert?

- Its dry
- Temperatures swing

Concrete and Water

- At mixing less water is better
- After setting more water is better
- Later on less water is better

Concrete Materials

What controls performance?

Aggregates

- Aggregates comprise ~70% of the volume of a concrete mix.
- Aggregate properties influence :
 - Water demand
 - Durability
 - Workability
 - Dimensional changes

Aggregates in Concrete

- Physical properties to consider:
 - Contamination
 - Gradation
 - Absorption
 - Surface texture
 - Particle shape

Aggregate Gradation

- Combined gradation controls
 - Workability
 - Volume of paste needed

Moisture State

Uniformity

Grove

Aggregate Durability

Aggregate-related distresses include the following:

- Alkali-aggregate reactivity (ASR / ACR)
- D-cracking
- Surface popouts
- Polishing

Cementitious Materials

Not to scale

Portland Cements

- Type I general use (ASTM C 150)
- Type IL general use (ASTM C 595)

Cement is Changing

Chemical Composition

Supplementary Cementitious Materials

- Fly ash
- Slag
- Natural pozzolan
- Silica fume

Sources

- Fly ash coal fired utilities
- Slag iron making
- Silica fume ferro silicon
- Metakaolin partially calcined clay

Supplementary Cementitious Materials

So What Do They Do?

- SCM's change properties
- Means we have to allow for them
- Cracking risk changes
- Finishing and curing needs change
- Strength rate slows
- Permeability decreases (good)

Water

- Potable or
- Free of organics & contaminants

Water Reducers

Retarders

- Slow hydration
 - Slows need for sawing in hot weather
 - Reduces heat of hydration peak
 - May reduce slump loss
 - May improve long-term strength
 - May increase risk of plastic cracking
- Often based on sugars

Accelerators

- Increase rate of hydration
 - Setting time decreased in cold weather
 - Increased early strength
 - May increase risk of shrinkage cracking
- Avoid chloride based products if steel is in the concrete

Fibers - Critical Properties

- Stiffness
- Bond
- Strength
- Size
- Durability

"Micro" vs. "Macro" Fibers

- Micro (Low Volume Addition) Fibers
 - Diameters < 0.004"
 - Polypropylene, Nylon, Carbon, Cellulose
 - 0.03 0.1% volume (0.5-1.5#/cy)
- Macro (High Volume Addition) Fibers
 - Diameters: 0.008 0.03"
 - Synthetic, Steel 0.2 1.0% volume [3 -15#/cy (Synthetic) or 20-100#/cy (Steel)]

Effects of Fibers

- Do not affect strength
- Do increase toughness / strain capacity

Roesler

Curing

- Keep the water in...
- Curing compound should be applied as soon as practical after finishing
- Should be white
- Poly-alpha-methylstyrene is effective
- Alternatives are water fogging, plastic sheeting, ponding
- How do we know it is good?

Internal Curing

- Provide curing water uniformly through the section
- Material should
 - Hold sufficient water
 - Hold the water until needed and not effect w/c
 - Give up water at high RH (desorption)
 - Not adversely effect the concrete quality

Weiss

Proportioning

Proportioning Approaches Past

Add salt

- Structural concrete 1:2:4
- Other concrete 1:3:6
- Waterproof concrete
- No chemicals
- No SCMs
- Precision was ugly
- Bulking made it worse

Proportioning Approaches Present

- ACI 211
 - Last revised in 1991
 - Linear
- Developed
 - Before water reducers
 - Before supplementary cementitious materials
- Primarily focused on structural concrete
 - 100 mm (4") slump
 - 30 MPa (~4000 psi)

	A	
	C C B	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
-	C	ในกร้านร้องนี้สูงนั้นขึ้นที่มีที่มีที่มีนี้ไว้ระการกร้า <mark>น เป็นสารที่สุดที่สุดที่ที่มี</mark> และหมีสุดที่ที่มีและหมีสุดที่มี
	к	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1

Preconceptions

- More _____ ent = mp____ strength
- Streigth is everythin
- Sluip indicates qual
- Graditions of individual fractions are critical

What do we need?

- Transport properties (everywhere)
- Aggregate stability (everywhere)
- Strength (everywhere)
- Cold weather resistance (cold locations)
- Shrinkage (dry locations)
- Workability (everywhere)

Proportioning

How do we proportion to achieve design goals?

		Workability	Transport	Strength	Cold weather	Shrinkage	Aggregate stability
Aggregate System	Type, gradation	√ √	-	-	-	-	√ √
Paste quality	Air, w/cm, SCM type and dose	✓	√ √	~ ~	~ ~	~	✓
Paste quantity	Vp/Vv	✓	-	-	-	$\checkmark\checkmark$	-

Step 1 Paste Quality

- Binder type
 - Cement type
 - SCM type and dosage
- w/cm
 - •~0.38-0.42
- Air void system
 - <0.2 SAM
 - <0.008 in. spacing factor</p>
 - >5% in place
 - Stable

Step 2 Aggregate system

- Choices...
 - 2 bins or 3?
 - ASTM C33
 - Or combined:
 - Haystack
 - Shilstone Plot
 - Power 45
 - Tarantula

Step 2 Aggregate system

Tarantula Curve

Step 2 Aggregate system

• Choose an aggregate system...

Workability

Strength

Air Permeability

Rapid Chloride Penetration

Shrinkage

- Need a minimum paste for workability
- Excess has a:
 - Small negative effect on strength
 - Negative effect on permeability, shrinkage, cost
 - Negative effect on heat
- "Optimum" depends on:
 - Aggregate type
 - Gradation
 - Binder type
- Typically Vv ~125-200%

Doing the Sums

The wonders of a spreadsheet and a solver function...

Doing the Sums

The wonders of a spreadsheet...

	Pa	ste Quali	ty		National Concrete Pavement				
Project	Gravel 1"		5/15/20	117	т	Technology Center			
Materials									
		Targets							
			R.D.				Tech Center		
Cement	Type I		3.15						
SCM 1	F Ash		2.65			.			
SCM 2	Slag		1.00			OWA STATE UN	IVERSITY		
Coarse Agg	A85006		2.72						
Fine Agg	A25518		2.66			stitute for Transportati	on		
Intermediate	A85007		2.43						
Water			1.00						
						Blue= Input Data			
Cementitious		428	pcy			Red = Calculation	Don't touch!		
w/cm		0.42				Yellow = Output	Don't touch!		
Air %		5.0	%			Black = Working	Don't touch!		
% SCM 1		20	%						
% SCM 2		0	%						
Voids in aggregate	•	25.3	%						
Required Vp/Vv		125	%						
Strength		4000	psi	7 days					
RCP			coulomb	56 days					
Wenner		27	kΩ-cm	28 days					

Doing the Sums

The wonders of a spreadsheet...

	Mixtu	re Propor	rtions			Nation	National Concrete Pave			
Project	Gravel 1"		5/15/201	17		Techn	Technology Center			
Mixture Propor	tions									
		Targets		Actual						
			Pounds	R.D.	Volume			Tech Center		
Cement	Type I		342	3.15	1.74					
SCM 1	F Ash		86	2.65	0.52	Terrer	OWA STATE UNIVERSITY			
SCM 2	Slag		0	1.00	0.00	IOWA				
Coarse Agg	A85006		1753	2.72	10.33		titute for Transportation			
Fine Agg	A25518		1318	2.66	7.94	Institute				
Intermediate	A85007		340	2.43	2.24					
Water			180	1.00	2.88					
Air %			5.0		1.35		Blue= Input Data			
			4019		27.00		Red = Calculation	Don't touch!		
							Yellow = Output	Don't touch!		
Cementitious		428	428	pcy			Black = Working	Don't touch!		
Volume of paste			24.0	%						
Volume of aggs			76.0	%						
Volume of voids			19.2							
vp/vv		125	125.0							
w/cm		0.42	0.42							
% SCM 1		20	20	%						
% SCM 2		0	0	%						
Mass aggs		3411	3411	pcy						
Excess paste, %			4.8	%						

Trial Batches

- Workability
- Air void system
- Setting
- Strength gain
- Permeability

So

- Its all about the water...
 - The right amount
 - At the right time

Concrete and Water

• Later on - less water is better

National Concrete Pavement Technology Center

IOWA STATE UNIVERSITY

Tech Center

Institute for Transportation

Design and Construction of Sustainable Concrete Pavements in Desert Environments

1.	Concrete Mixtures for Pavement – This session will present the "How's & Why's" of specifying and proportioning cements, SCMs, admixtures, and aggregates for desert pavements. Peter Taylor, CP Tech Center	Tuesday, April 19 th 9:00 to 10:15 am
2.	Pavement Design and Critical Properties – Designing and specifying pavements for desert environments requires a solid understanding of how design relates to placement and performance. Tom Van Dam, NCE	Tuesday, April 26 th 9:00 to 10:15 am
3.	Concrete Pavement Inspection and Testing – Pavement quality is controlled through comprehensive inspection and testing requirements. Desert environments present added paving risks that should be accounted for. Mike Praul, FHWA	Tuesday, May 10 th 9:00 to 10:15 am
4.	Pavement Construction and Performance – Successful paving in desert environments requires attention to key construction processes. Pavement condition data indicates excellent performance in desert environments. Angel Mateos, UCPRC; Dave Rath, Southwest Concrete Paving Company; and Matt Fonte, Fonte & Company	Tuesday, May 24 th 9:00 to 10:15 am