Sustainable Concrete Construction

Dr. Peter Taylor, PE FACI

Setting the Stage

Imagine a world without infrastructure:
- Transportation
- Sustenance
- Shelter
- Expertise
- Energy

• Transportation effects are non-trivial

• Imagine a world without concrete
 - Buildings
 - Services
 - Transportation
So let's keep building!

- But…

Why Sustainability?

- 30 billion tons of concrete is used each year worldwide
- ~½ ton CO₂ per person per year

We need a lot of concrete so the impact is high

The conundrum then is: how do we deliver/maintain the infrastructure without hurting the planet?

- Economics still rule
- But carbon…

https://architecture2030.org/ipcc_analysis/
Where Does the Carbon Come From

- Heating the kiln
 - Can and has been reduced
- Decomposing limestone rock
 - Has to be balanced
- Traffic
 - Can be reduced

How?

- What can we do to reduce impact?
 - Use less concrete
 - Use less binder in the concrete
 - Use less clinker in the binder
 - Reduce construction impacts
 - Reduce user impacts

Use Less Concrete in the Structure

- Avoid replacing it
 - Longer lasting
 - Use existing equity of older pavements (overlays)
- More efficient designs
 - Beware of rules of thumb, and cut-and-paste
 - Appropriate construction systems

Use Less Binder in the Concrete

- Many specifications call for more than needed

<table>
<thead>
<tr>
<th>Component</th>
<th>Conventional</th>
<th>Optimized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>400</td>
<td>351</td>
</tr>
<tr>
<td>SCM 1</td>
<td>170</td>
<td>150</td>
</tr>
<tr>
<td>SCM 2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coarse Agg</td>
<td>457</td>
<td>662</td>
</tr>
<tr>
<td>Fine Agg</td>
<td>1171</td>
<td>1303</td>
</tr>
<tr>
<td>Aggregate</td>
<td>244</td>
<td>254</td>
</tr>
<tr>
<td>Water</td>
<td>228</td>
<td>200</td>
</tr>
<tr>
<td>Air</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Total</td>
<td>3333</td>
<td>3474</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Conventional</th>
<th>Optimized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortar</td>
<td>570</td>
<td>501</td>
</tr>
<tr>
<td>w/cm</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>% SCM 1</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Conventional</th>
<th>Optimized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workability</td>
<td>Slump 2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>HRWRA</td>
<td>2.0</td>
<td>2.3</td>
</tr>
<tr>
<td>Air content</td>
<td>6.8</td>
<td>7.0</td>
</tr>
<tr>
<td>Box</td>
<td>1 - 0</td>
<td>1 - 0</td>
</tr>
<tr>
<td>Initial set</td>
<td>6.27</td>
<td>6.12</td>
</tr>
<tr>
<td>Strength at 7</td>
<td>3,340</td>
<td>3,650</td>
</tr>
</tbody>
</table>
Use Less Cement in the Binder

- Supplementary cementitious materials
 - Enhance performance
 - Increase longevity
 - Reduce disposal headaches
- Ternary combinations
- Harvested fly ash

Use Less Cement in the Binder

- Other SCMs
 - Recycled Ground Glass, ASTM C1866
 - Locally processed waste products ASTM C 1709
 - LC3 cement

Use Less Cement in the Binder

- Portland Limestone Cements
 - Up to 15% ground limestone
 - Similar performance
 - Becoming the norm
- Non-portland cements
 - Geopolymer cements / Activated fly ashes
 - Calcium sulfo-alumina-cements

Use Low-Carbon Cements

- Test sections built at MNRoad
 - Assess CO₂ savings
 - Measure performance under traffic
 - 16 sections
 - Control and optimized mixtures
 - Reclaimed fly ashes
 - Carbon injection
 - Innovative SCMs
Put the Carbon Back!

Natural carbonation
- Slow
- Dependent on environment
- Can compromise steel protection
 - Can be accelerated with grinding

Put the Carbon Back!
- Inject carbon dioxide into concrete in the mixer
- CO₂ is mineralized then converts to solid CaCO₃
- Reported to improve permeability

Other Factors
- Recycled Concrete Aggregate
- Albedo (heat island)
- Lighting (& light pollution)
- TiO₂
- Resilience

Construction
- Haul distance
- Disturbance
 - Noise
 - Dust
 - Access
- Delays
 - Traffic
 - Safety
Use Phase

• Fuel consumption
• Care and keeping

End-of-Life
19%

Use 15%

Maintenance & Rehabilitation 7%

Breakdown of lifecycle greenhouse gas emissions for a pavement in Missouri

*Other carbonation & lighting

Measurement

• Life-cycle assessment (LCA)

https://www.epa.gov/greenvehicles/electric-vehicle-myths#Myth5

• Ask for what is needed, and no more
 • Understand what makes concrete "good"
 • Specify the critical properties and test for them
 • Prepare the mixtures to meet those specifications

Measurement

• EPDs are coming

NRMCA
In Summary

<table>
<thead>
<tr>
<th>Measurable</th>
<th>Phase</th>
<th>Impact</th>
<th>Who</th>
<th>Side effect</th>
<th>Cost</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficient designs</td>
<td>Yes</td>
<td>Construction</td>
<td>Point of delivery</td>
<td>Agencies</td>
<td>None</td>
<td>Reduced</td>
</tr>
<tr>
<td>Reduce cement content</td>
<td>Yes</td>
<td>Construction</td>
<td>Point of delivery</td>
<td>All</td>
<td>None</td>
<td>Reduced</td>
</tr>
<tr>
<td>Less</td>
<td>EPD</td>
<td>Construction</td>
<td>Point of delivery</td>
<td>All</td>
<td>None</td>
<td>Reduced</td>
</tr>
<tr>
<td>Excess cement</td>
<td>EPD</td>
<td>Construction</td>
<td>Point of delivery</td>
<td>All</td>
<td>None</td>
<td>Reduced</td>
</tr>
<tr>
<td>Increased cement content</td>
<td>EPD</td>
<td>Construction</td>
<td>Point of delivery</td>
<td>All</td>
<td>None</td>
<td>Reduced</td>
</tr>
<tr>
<td>Reduced cement content</td>
<td>EPD</td>
<td>Construction</td>
<td>Point of delivery</td>
<td>All</td>
<td>None</td>
<td>Reduced</td>
</tr>
<tr>
<td>Carbon footprint</td>
<td>EPD</td>
<td>Construction</td>
<td>Point of delivery</td>
<td>All</td>
<td>None</td>
<td>Reduced</td>
</tr>
<tr>
<td>Non-portland</td>
<td>EPD</td>
<td>Construction</td>
<td>Point of delivery</td>
<td>All</td>
<td>Cost</td>
<td>Increased</td>
</tr>
<tr>
<td>Construction practices</td>
<td>Yes</td>
<td>Construction</td>
<td>Point of delivery</td>
<td>Contractor</td>
<td>None</td>
<td>Reduced</td>
</tr>
<tr>
<td>Recycling</td>
<td>Yes</td>
<td>Construction</td>
<td>Point of delivery</td>
<td>All</td>
<td>None</td>
<td>Reduced</td>
</tr>
<tr>
<td>Smoothness</td>
<td>Yes</td>
<td>Use phase</td>
<td>Reduces others' footprint</td>
<td>Contractors</td>
<td>Improved safety</td>
<td>Reduced</td>
</tr>
<tr>
<td>Albedo</td>
<td>Yes</td>
<td>Use phase</td>
<td>Reduces others' footprint</td>
<td>Agencies</td>
<td>Cooler city</td>
<td>Reduced</td>
</tr>
<tr>
<td>Lighting</td>
<td>Yes</td>
<td>Use phase</td>
<td>Reduces others' footprint</td>
<td>Agencies</td>
<td>Improved safety</td>
<td>Reduced</td>
</tr>
<tr>
<td>Long life</td>
<td>Yes</td>
<td>Use phase</td>
<td>Later</td>
<td>All</td>
<td>None</td>
<td>Reduced</td>
</tr>
<tr>
<td>Carbonation</td>
<td>Yes</td>
<td>Use phase</td>
<td>Later</td>
<td>All</td>
<td>None</td>
<td>Reduced</td>
</tr>
<tr>
<td>Respiration</td>
<td>Yes</td>
<td>Use phase</td>
<td>Later</td>
<td>All</td>
<td>None</td>
<td>Increased</td>
</tr>
</tbody>
</table>

In Summary

- This is not new

Where next?

- Keep encouraging the community to adopt change

- Keep working on:
 - Alternative materials
 - Developing the tools to quantify concrete in the field
 - Building long lasting / low impact pavements

So

- Some things we can change now
 - Make better concrete
 - Make better pavements

- Others will take time

The Difficult We Do Immediately. The Impossible Takes a Little Longer