Identifying Concrete Plant Mixing Procedures for Electrically Conductive Concrete for the Iowa City Bus Stop Enhancement Project

Md Lutfor Rahman, PhD Candidate
Graduate Research Assistant
Civil, Construction and Environmental Engineering
Iowa State University
Ames, IA-50011
E-mail: mlrahman@iastate.edu

Better Concrete Conference
November 9, 2022

Contributors

• Amir Malakooti
 — PhD candidate, ISU
 — Research Engineer, Federal Highway Administration Turner-Fairbank Highway Research Center

• Dr. Halil Ceylan, Dist.M.ASCE
 — Pitt-Des Moines, Inc. Endowed Professor of CCEE, ISU
 — ISU Site Director, FAA Partnership to Enhance General Aviation Safety, Accessibility and Sustainability (PEGASAS) Center of Excellence (COE) on General Aviation Director, Program for Sustainable Pavement Engineering and Research (PROSPER)

• Dr. Sungwhan Kim, P.E.
 — Research Scientist, Institute for Transportation, ISU

• Dr. Peter C. Taylor, P.E.
 — Director, National Concrete Pavement Technology Center, Institute for Transportation, ISU

Acknowledgments

The project Technical Advisory Committee (TAC) for IHRB Projects TR-789, Implementing a Self-Heating, Electrically Conductive Concrete Heated Pavement System for the Bus Stop Enhancement Project in the City of Iowa City

• TAC – Iowa DOT
 — Bob Younie
 — Chris Brakke
 — Vanessa Goetz

• TAC – Iowa City
 — Ron Knoche
 — Joseph B. Welter
 — Marri Van Dyke

• TAC – ISU
 — Paul Wiegand

• HBK Engineering
• All American Concrete
• Advanced Electrical Services
• Croell Inc. at Iowa City
• PROSPER Research Team

Outline

• Introduction
• Methodology
• Results
• Conclusions
Outline

- Introduction
- Methodology
- Results
- Conclusions

Introduction:

Snow Events

Introduction: Impacts on Transportation

Heavy rain, snow, and other storms can have significant impacts on the safety, mobility, and productivity of road users. Over the last 10 years, 22 percent of all vehicle crashes were weather related. On average, these crashes resulted in nearly 6,000 deaths and more than 445,000 injuries each year. Likewise, the delays associated with adverse weather can be profound and have significant economic impacts.

Road Weather Management – Weather-Savvy Roads

https://www.fhwa.dot.gov/innovation/everydaycounts/edc_4/roadweather.cfm

Introduction: Impacts on Transportation (Cont’d)

Total Cost of Delay in the U.S. (dollars, billion)

<table>
<thead>
<tr>
<th></th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airlines</td>
<td>5.6</td>
<td>6.4</td>
<td>7.7</td>
<td>8.3</td>
</tr>
<tr>
<td>Passengers</td>
<td>13.3</td>
<td>14.8</td>
<td>16.4</td>
<td>18.1</td>
</tr>
<tr>
<td>Lost Demand</td>
<td>1.8</td>
<td>2.0</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Indirect</td>
<td>3.0</td>
<td>3.4</td>
<td>3.9</td>
<td>4.2</td>
</tr>
<tr>
<td>Total</td>
<td>23.7</td>
<td>26.6</td>
<td>30.2</td>
<td>33.0</td>
</tr>
</tbody>
</table>

Thousands Of Flights Cancelled, Delayed As Storm System Wreaks Holiday Travel Havoc

https://www.fhwa.dot.gov/innovation/everydaycounts/edc_4/roadweather.cfm
Introduction: Snow Removal Traditional Method

- Photos: Whopnews- January 21, 2016
- Photos: Greenwise- February 15, 2017

Introduction: Drawbacks of Traditional Method

- Infrastructure deterioration
- Environmental pollution
- Damage to pavement

Introduction: Innovative Technologies

• The transportation authorities continuously seek innovative and smart snow removal technology to combat their annual snow removal problem
 – Hydronically-heated pavement systems (HPS)
 – Resistive cable HPS
 – Phase-change-material integrated pavement systems
 – Superhydrophobic coating techniques
 – Electrically-conductive concrete (ECON) HPS

Reference: [Rahman et al., 2022]
Introduction: ECON HPS

Reference: (Abdualla et al., 2018)

Introduction: Field Implementations

Photo: DSM International Airport (Nahvi et al., 2018)

Photo: Iowa DOT Headquarters in Ames (Malakooti et al., 2020)

Introduction: Problem Statement

• There have been discrepancies in ECON electrical resistivity between full-scale field construction and laboratory samples

 – The DSM International Airport ECON has an electrical resistivity eight times higher than the ECON produced in the laboratory\(^a\)

 – The Iowa DOT ECON HPS encountered the same problem\(^b\)

Reference: \(^a\)(Abdualla et al., 2018) \(^b\)(Malakooti et al., 2020)

Introduction: Objective

• As part of a large-scale field implementation study on using ECON HPS for bus stop enhancement construction in Iowa City, this study aims to

 – determine mix proportion and mixing procedure of CF-based ECON suitable for ready-mix plant production
Outline

- Introduction
- Methodology
- Results
- Conclusions

Methodology: Mix Proportion

<table>
<thead>
<tr>
<th>Item</th>
<th>Mix 1</th>
<th>Mix 2</th>
<th>Mix 3</th>
<th>Mix 4</th>
<th>Mix 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>cement, Kg (B)</td>
<td>408 (899)</td>
<td>408 (899)</td>
<td>408 (899)</td>
<td>408 (899)</td>
<td>408 (899)</td>
</tr>
<tr>
<td>coarse aggregate, Kg (B)</td>
<td>584 (1,287)</td>
<td>584 (1,287)</td>
<td>582 (1,284)</td>
<td>582 (1,284)</td>
<td>582 (1,284)</td>
</tr>
<tr>
<td>fine aggregate, Kg (B)</td>
<td>475 (1,047)</td>
<td>475 (1,047)</td>
<td>474 (1,044)</td>
<td>474 (1,044)</td>
<td>474 (1,044)</td>
</tr>
<tr>
<td>water, Kg (B)</td>
<td>171 (378)</td>
<td>171 (378)</td>
<td>171 (378)</td>
<td>171 (378)</td>
<td>171 (378)</td>
</tr>
<tr>
<td>w/cw</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>CT, Kg (B)</td>
<td>17 (38)</td>
<td>17 (38)</td>
<td>19 (42)</td>
<td>19 (42)</td>
<td>19 (42)</td>
</tr>
<tr>
<td>AIRALON 7000, m²/m³ (net/sf²)</td>
<td>193 (3)</td>
<td>193 (3)</td>
<td>174 (4.5)</td>
<td>233 (5.5)</td>
<td>157 (4)</td>
</tr>
<tr>
<td>ZYLA 630, m³/m² (as/asf³)</td>
<td>1,740 (45)</td>
<td>1,740 (45)</td>
<td>-</td>
<td>2,437 (63)</td>
<td>-</td>
</tr>
<tr>
<td>OpilFlo MB, m³/m² (as/asf³)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,912 (49)</td>
<td>-</td>
</tr>
<tr>
<td>MRA 63, m³/m³ (as/asf³)</td>
<td>870 (22.5)</td>
<td>1,044 (27)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Methodology: Mix Procedures

Methodology: Trial Batches
Outline

• Introduction
• Methodology
• Results
• Conclusions

Results:

28-Day Electrical Resistivity

Results:

Electrical Resistivity Vs Curing Time

Results:

28-Day Electrical Resistivity Vs Mixing Time
Results: Heating Performance

![Graph showing heating performance over time and temperature](image)

Results: Heating Performance (Trial Batch 4)

![Images showing temperature distribution](image)

Results: Microstructure Evaluation

![Images showing microstructure evaluation](image)

Outline

- Introduction
- Methodology
- Results
- Conclusions
Conclusions

• CF begins to degrade with an increase in mixing time.

• Mixture procedure method 4 using mixture proportion-5 produced ECON with the lowest electrical resistivity and highest heating rate.

• Estimating the 28-day electrical resistivity of ECON samples is possible after at least three days of curing; before that, electrical resistivity remains unstable and increases rapidly.

Thank You!
Questions & Comments?