Performance Centered Concrete Construction

Life After PEM

Peter Taylor, PhD, PE (IL), FACI

IOWA STATE UNIVERSITY
Institute for Transportation

National Concrete Pavement Technology Center

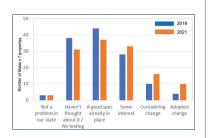
The Goal

But how do we get there?

- What tests inform our decisions?
- What levers can we pull?

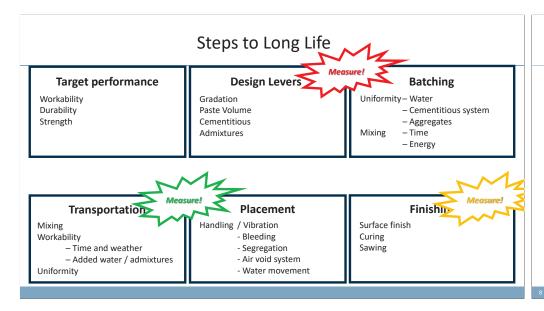
PEM Philosophy

- What do we want from a mixture?
- How do we produce it?
- How do we know its good?
- P3C
 - What happens after it leaves the batch plant?


PEM – The mixture

- The critical properties:
 - Transport
 - Cold weather
 - Strength
 - Aggregates
 - Shrinkage
 - Workability

PEM – Impact


- At least 17 states have, or are, changing their specs
 - Adopting at least one of the suggestions of AASHTO R101
 - Removing slump
 - Changing cement content limits
- We aim to keep the momentum going
 - Training
 - Talking to agencies

Where Next?

- We have the perfect mixture in the truck...
- What happens after it leaves the plant
 - More research needed!
 - Performance Centered Concrete Construction (P3C)

In the Lab

Proportioning to achieve performance goals

		Workability	Transport	Strength	Cold weather	Shrinkage	Aggregate stability
Aggregate System	Type, gradation	11	-	-	-	-	44
Paste quality	Air, w/cm, SCM type and dose	✓	44	44	44	✓	✓
Paste quantity	Vp/Vv	✓	-	-	-	44	-

In the Lab

- Design the mixture for the materials available
- Check that it meets performance requirements
- Assess sensitivity to normal variations
- Develop plans to react to changes

In the Lab

- Aggregate stability sources and SCM dosages
- Transport properties (permeability) resistivity and w/cm
- Cold weather resistance air void system and SCM content
- Strength w/cm
- Shrinkage paste content
- Workability aggregate gradation, paste content

In the Lab

- Fresh properties that affect construction
 - Response to vibration VKelly / Box
 - Edge slump VKelly / Box
 - Bleeding C232
 - Segregation No test (Tayabji)
 - Finishability

At the Batch Plant

Workability

Power meter
Call from the paving supervisor
Data from the paver?

At the Batch Plant

Uniformity

No standard test

Stockpile controlWater control

. . . .

Moisture probes

Loading sequence

-

Mixing time

At the Paver

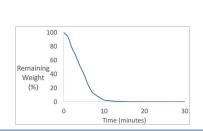
Samples

Workability

Air void system

Resistivity

Strength



At the Paver

Water

Phoenix

At the paver

- Segregation
 - Mixture proportions
 - Uniform delivery
 - Placing method

No field test

At the Paver

Workability

Augur power demand? Torque to move paver? VKelly on a boom?

Behind the Paver

No field test

Internal sensors

- Consolidation
 - Vibration
 - vpm
 - Duration
 - Paver speed

Samples Behind the Paver

• Great in theory but...

Behind the Paver

- Thickness
 - Probe
 - MIT SCAN T3

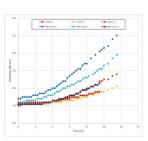
Behind the Paver

- Finish and Smoothness
- Real time smoothness

- Mixture
- Pan setup
- Grout box
- Paver speed
- Finishing

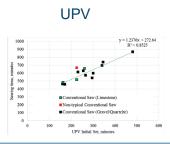
Behind the Paver

- Texture
 - Tine setup
 - Bridge speed



Behind the Paver

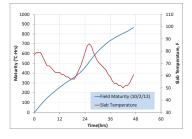
Curing


- No field test
- Curing compound type
- Timing
- Spray rate

Behind the Paver

- Crack free
 - Saw type
 - Blade ttype and condition
 - Depth
 - Timing

The Next Days


Joint Activation

Mira

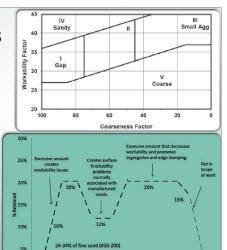
The Next Days

- Maturity
 - Opening to traffic

P3C

- Goals:
 - Continue to assist state agencies on specification improvements
 - Continue to offer training
 - Investigate tools to monitor the mixture through the paving process
 - Investigate feedback loop approaches

27

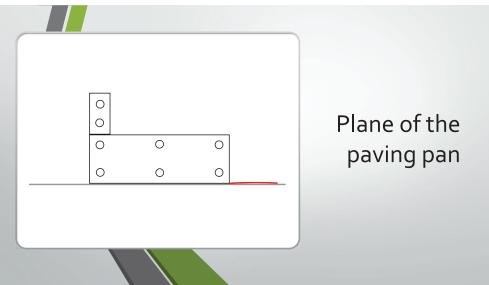

Concrete Mix Design

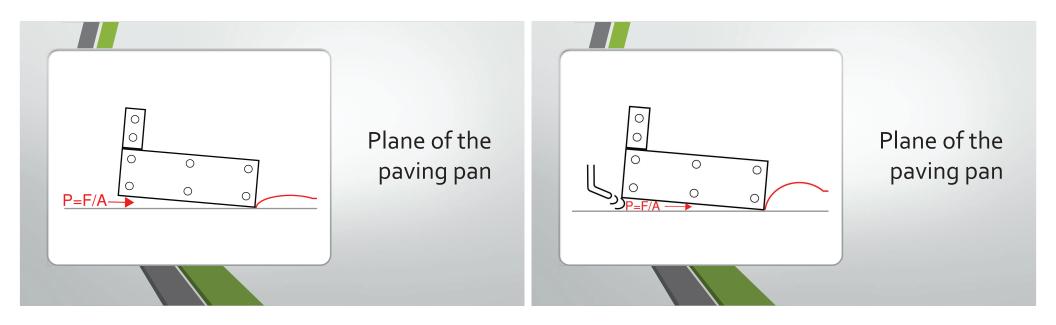
- Workability is dependent on the aggregate gradations.
- Testing for the effectiveness of the water reducers
- Not all admixtures are compatible with all SCM's
- Testing a range of water cement ratios and aggregate combinations at mix design time.

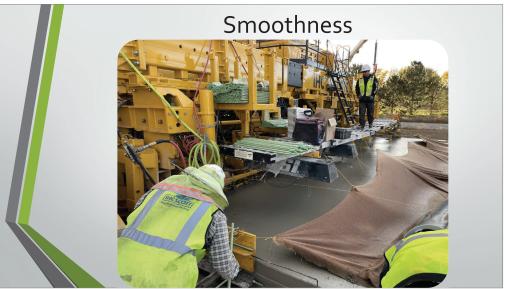
Optimized Gradations • Shilstone opened our eyes

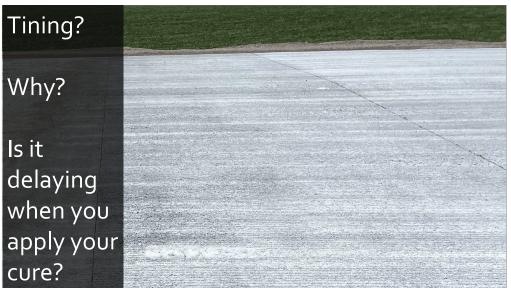
- Shilstone opened our eyes to the need for optimized gradations
- Ley took it one step further with an emphasis on workability
- Shilstone focus on the relation between 3/8 and the #8
- Tarantula focuses on all the sieves

Concrete Batching

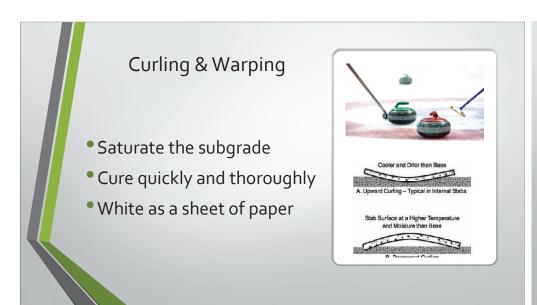

- Mixer efficiency
 - What is the condition of your drum liners?
- How is the drum loaded
 - Are all the aggregates on the charge belt from start to finish?
 - Cementitious throughout the charging of the drum
 - Water throughout the charging of the drum
 - When is each admixture introduced to the drum
- 60 second batching
 - Is the mix consistent throughout the drum in 60 seconds?
 - This is not in relation to slumping out a batch.







Smoothness 3 Key Factors


- Consistency in everything all day long
 - con·ti·nu·i·ty
 - 1. the unbroken and consistent operation of something over a period of time.
- Volatility mitigation in the operation
 - vol·a·til·i·ty
 - 1. liability to change rapidly and unpredictably, especially for the worse.
- Reduction in the Energy applied to the concrete
 - Using less energy to preform the same task

