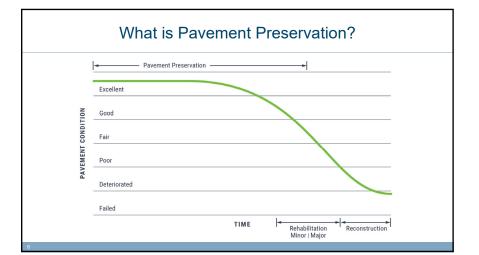


Acknowledgments & Further Information

• More information is available from the CP Tech Center:

- <u>https://cptechcenter.org/pavement-preservation/</u>
- New in 2022: Concrete Pavement Preservation Guide, 3rd Edition

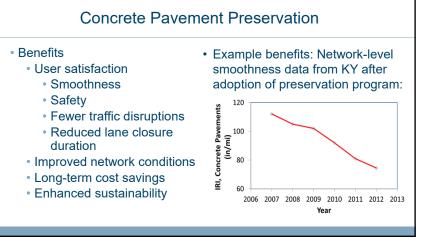

Introduction: What is Pavement Preservation?

What is Pavement Preservation?

- · Proactive approach to managing pavement assets
- Focus on extending pavement life and maintaining or restoring functional condition
- Accomplished using a collection of preservation and rehabilitation treatments

A more recent definition:

Concrete pavement preservation is a strategy of extending concrete pavement service life for as long as possible by arresting, greatly diminishing, or avoiding pavement deterioration processes.


What is Pavement Preservation?

• Keys to successful projects:

- Right pavement: few/limited structural problems or materials-related distress
- Right time: before significant structural issues
- **Right treatment:** address the conditions with targeted treatments
- Right installation: install the treatment effectively so the full benefits are achieved

Concrete Pavement Preservation

Getting Started: Evaluating the Pavement

Primary Treatments:

- Crack sealing
- Diamond grinding
- Diamond grooving
- Dowel bar retrofit
- Full-depth repair
- Joint resealing
- Partial-depth repair

Additional Treatments:

- Concrete overlay
- Cross stitching
- Slab stabilization
- Slab jacking
- Slot stitching
- Retrofitted edge drains

Concrete Pavement Preservation							
 Typical performance of selected preservation treatments: 							
	Treatment	Expected Performance (treatment life)					
	Slab stabilization	5 to 10 years					
	Partial-depth repairs	10 to 20+ years					
	Full-depth repairs	20+ years					
	Dowel bar retrofit	15 to 20+ years					
	Cross stitching	10 to 20+ years					
	Diamond grinding	15 to 25+ years					

8 to 16+ years

Purposes of a Pavement Evaluation

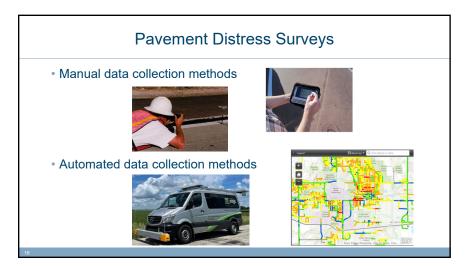
Provides qualitative information to:

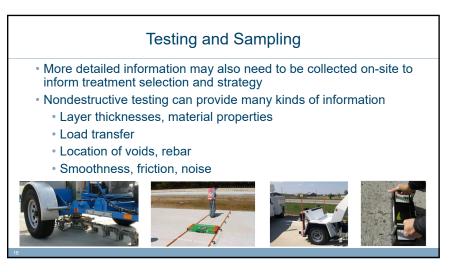
Joint resealing

- Determine causes of deterioration
- Determine if pavement is <u>not</u> a candidate for preservation
- -Develop appropriate treatment alternatives
- Provides quantitative information for:
 - -Quantity estimates
 - -Assessment of deterioration rates
 - -Performing life-cycle cost analyses

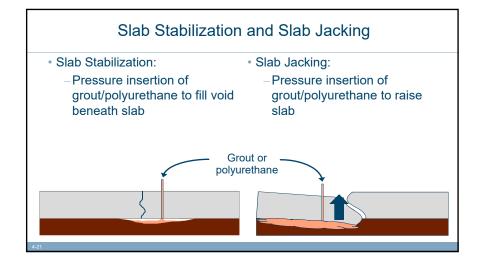
Key Pavement Evaluation Components

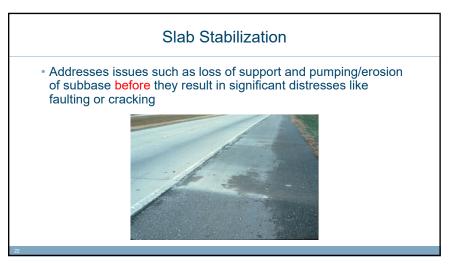
- Pavement Distress & Drainage Surveys
- Nondestructive Testing
- Surface Characteristics Testing
- Field Sampling and Testing

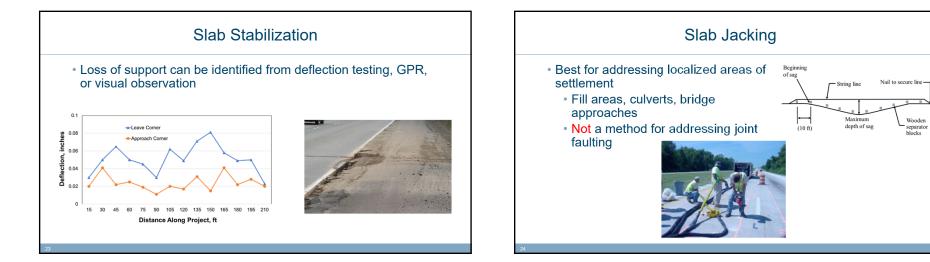


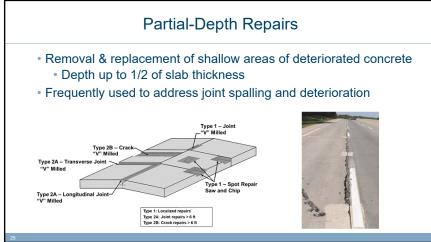


Example Distress Trigger Values						
Performance Indicator	Typical Trigger Value	Typical Limit Value	Possible Treatments			
Transverse Cracking	1.5-2.5% of slabs cracked	5-15% of slabs cracked	 Full-depth repair Dowel bar retrofit 			
Joint Deterioration	2.0-4.0% of joints	15-20% of joints	 Partial-depth repairs Full-depth repairs 			
Joint Faulting	1/8 inch	3/8 – 1/2 inches	 Dowel bar retrofit Diamond grinding Slab stabilization 			
Roughness	90 in/mi	170 in/mi	Diamond grinding			


Testing and Sampling


- Field sampling not routinely needed on most preservation projects
- In some cases, may be required to provide information on:
 - Layer type, thickness, and properties
 - Depth of deterioration
 - Underlying support layer conditions





Effective Preservation Tr	eatments
---------------------------	----------



Full-Depth Repairs Best for addressing intermittent structural deterioration Maintain serviceability or prepare pavement for overlay Table 6.1. Candidate JPCP/JRCP distresses addressed by FDRs Distress serverity

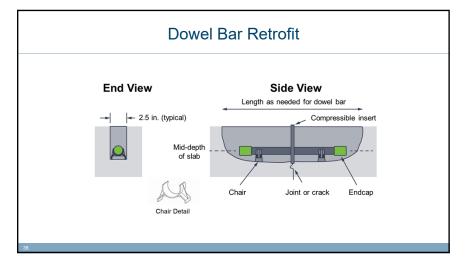
Distress type	Distress severity levels that could trigger FDR	Distress type	Distress severity levels that could trigger FDR
Transverse cracking	Medium, high	Punchout	Low, medium, high
Longitudinal cracking	Medium, high	Deteriorated transverse cracks ¹	Medium, high
Corner break	Low, medium, high	Longitudinal cracking	Medium, high
Spalling of joints	Medium, ¹ high	Blowup	Low, medium, high
Blowup	Low, medium, high	Construction joint distress	Medium, high
D-cracking (at joints or cracks) ²	Medium, ¹ high	Localized distress	Medium, ² high
Reactive aggregate spalling ²	Medium, ¹ high	D-cracking (at cracks) ³	High
Deterioration adjacent to existing repair	Medium, ¹ high	Deterioration adjacent to existing repair	Medium, ² high
Deterioration of existing repairs	Medium, ¹ high	Deterioration of existing repair	Medium, ² high

Full-Depth Repairs Design and materials considerations Repair location and boundaries Opening time demands Repair material selection Standard PCC mix High-early strength PCC mix Mixes with other rapid-setting cements Opening strength requirements

Full-Depth Repairs

- Construction steps:
 - 1. Sawing of repair boundaries
 - 2. Concrete removal
 - 3. Repair area preparation
 - 4. Restoration of load transfer
 - 5. Treatment of longitudinal joint
 - 6. Concrete placement and finishing
 - 7. Curing

Full-Depth Repairs One well, full-depth repairs are capable of an extended treatment life of 20+ years Restore load transfer to doweled pavements Use durable repair materials Ensure proper placement, finishing, and curing


Full-Depth Repairs

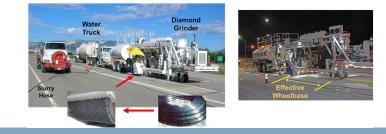
- Precast panels may also be used for full-depth repairs
- Several systems are available with similar installation steps:

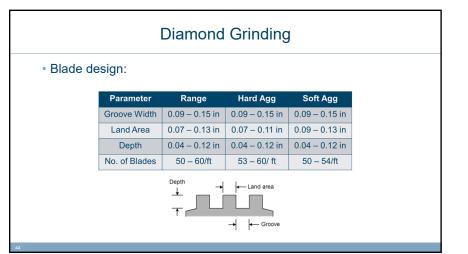
Retrofitted Edge Drains Remove surface infiltration water from beneath pavements Shortens drainage path Gets water out more quickly. Alleviate moisture issues on pavements with inadequate drainage Delay or slow the development of moisture-related distresses

Dowel Bar Retrofit Installation of dowel bars across transverse joints or cracks Improves load transfer, reduces deflections, and corrects and prevents faulting Typical repair: 3 to 4 bars in each wheel path

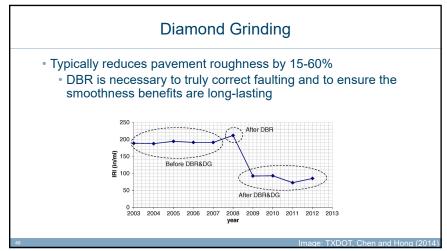
Dowel Bar Retrofit• Construction steps:1. Slot cutting2. Slot preparation3. Dowel bar placement4. Placement of patching material5. Re-saw joint/crack

Diamond Grinding (and Grooving)

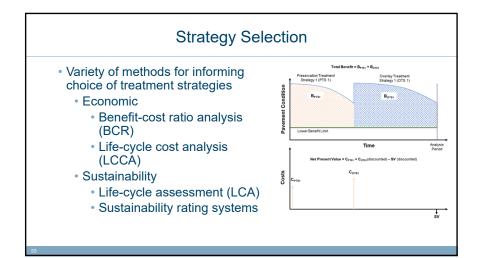

- Diamond grinding
 - Removal of a thin layer of the concrete surface
 - Improves pavement smoothness, surface texture, and noise
- Diamond grooving
 - Creation of channels to reduce potential for hydroplaning

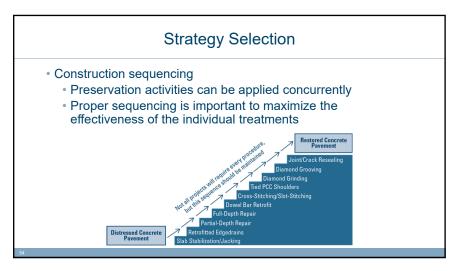





Diamond Grinding


- Can be constructed under mobile single lane closures
- Typical 4 ft grinding head (3 passes/lane)
- Slurry collection and removal process in urban areas




Joint Re-sealing and Crack Sealing

- Treatment life: 8 to 16+ years
- Caution with use of backer rod & hot pour in cold climates:

	_
Strategy Selection	

