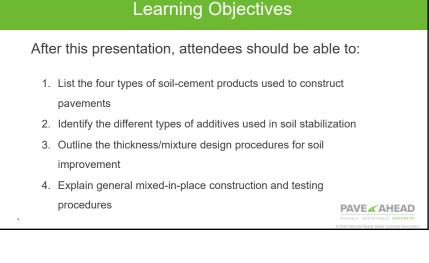
1

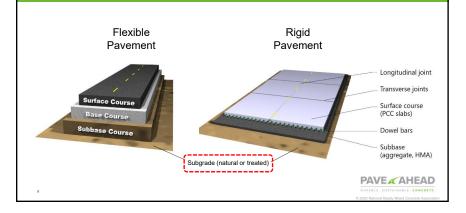
Your Co-Presenter Today


- · Greg Halsted, P.E., Senior Director, Local Paving
- NRMCA West Region
 - Washington
 - Oregon
 - California
 - Nevada
- 38 years in practice (GDOT, CRSI, PCA)
- Pavement, geotechnical, and foundation materials, design, construction, and sustainability
- Bellingham, Washington
- ghalsted@nrmca.org
- 360.920.5119

Your Other Co-Presenter Today

- Tyler Bodnar P.E., Director of Geotechnical Markets
- CNCA Covering all of CA & NV
- 17 years experience (RE, City Engineer, CNCA)
- 3 years as Technical Director of the Recycling & Stabilizing Association (RSA) of California
- Specializes in providing education, design optimization, constructability analysis, costing, and value engineering
- · Chico, California
- tyler.bodnar@cncement.org
- 530.521.0378

CNCA CALIFORNIA NEVADA CEMENT ASSOCIATION z z z lfqfhp hqwiri



Soil Stabilization Defined

- In civil engineering, soil stabilization is a general term for any physical, chemical, mechanical, biological, or combined method of changing a natural soil to meet an engineering purpose.
- Improved engineering properties of soils include mechanical strength, permeability, compressibility, durability, and plasticity.
- Used on any project (roadway, airfield, dam, or building) where soil acts as the foundation.

Structural Layers in Pavements

Solutions for Poor Subgrade Soils

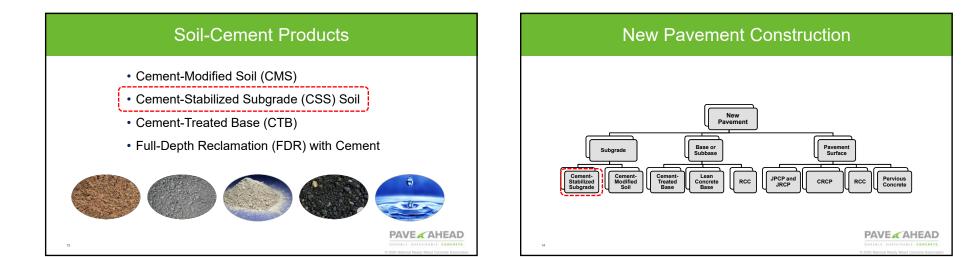
- Excavate and replace with select fill material such as better soil or aggregate
- Increase the thickness of the pavement base or subbase
- Contain the poor soils using fabrics or other geotextiles
- Alter the physical properties of the soils by incorporating an additive

PAVE

Soil Stabilizers

- Portland cement (dry or slurry)
- Lime (hydrated and dry)
- Fly ash (Class C and Class F)
- Bituminous (emulsion and bitumen)
- Chlorides (magnesium and calcium)
- Kiln dust (cement and lime)
- Others
 - Fibers
 - Polymers (synthetic and natural)
 - Enzymes
 - Resins
 - Proprietary products

PAVE AHEAD


Selecting Soil Stabilizers

When selecting the best soil stabilization product and method for your particular project, consider:

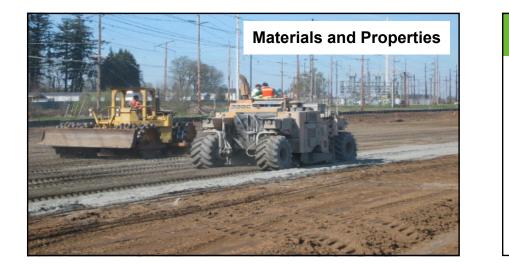
- · Soils to be treated
- Project type
- Design life
- Budget
- Environmental concerns
- Sustainability

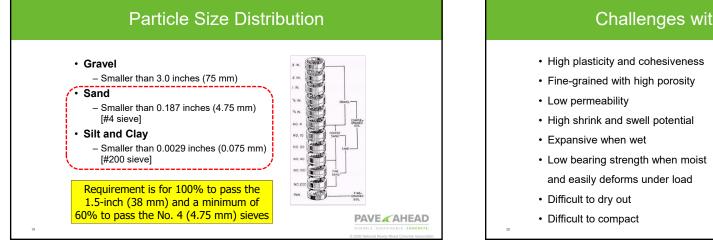
Applications for CSS

- Low volume roadways
- · Residential streets
- Medium to high-volume roads
- State routes
- Interstate highways
- Airport runways and taxiways
- · Parking lots
- Industrial storage facilities
- Port facilities
- Truck terminals
- Commercial sites

PAVE AHEAD

Benefits of CSS


- · Eliminates removal/replacement of inferior soils
- Reduces construction time (no mellowing)
- Works for a wide range of soils
- Requires small amounts of portland cement
- Lowers PI and improves volume stability
- Improves compactibility, strength, and bearing capacity of in situ soils
- Forms an all-weather work platform
- Provides permanent (non-leaching) change



PAVE AHEAD

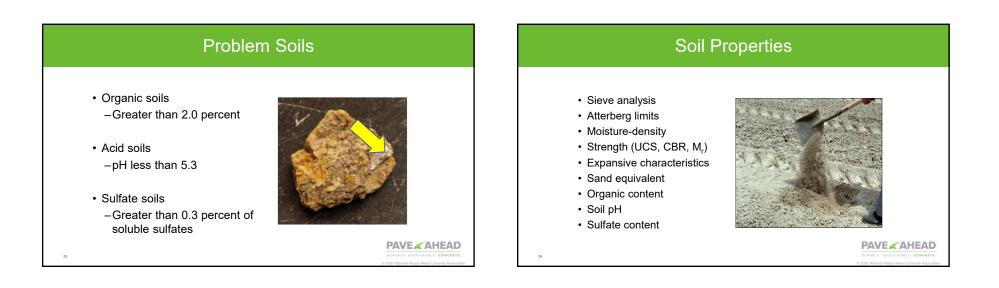
Λ

Challenges with Clay Soils

PAVE AHEAD

Challenges with Silty and Sandy Soils

- Silts are fine-grained and difficult to compact
- Uniform sands have poor gradation and difficult to compact
- · Low bearing capacity
- Low cohesiveness and shear strength
- Unstable under construction equipment



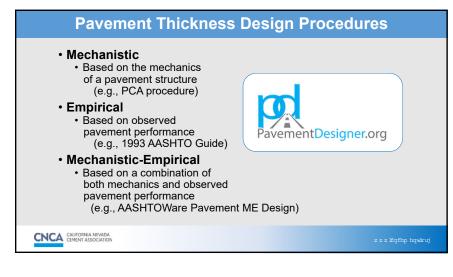
PAVE

Evaluation of Stabilizer Types

From USACE report "Chemical Stabilization Technology for Cold Weather", September 2002

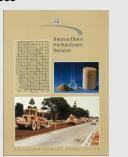
Standard Test Methods for CSS

- Sieve Analysis (ASTM D6913)
 Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis
- Atterberg Limits (ASTM D4318)
 Liquid Limit, Plastic Limit, and Plasticity Index of Soils
- Moisture-Density (ASTM D558)
 Moisture-Density (Unit Weight) Relations of Soil-Cement Mixtures
- Compressive Strength (ASTM D1633)
 - Compressive Strength of Molded Soil-Cement Cylinders
- Soluble Sulfates (ASTM C1580)
 Water-Soluble Sulfate in Soil


PAVE

Unconfined Compressive Strength (UCS)

- Common 7-day UCS strengths between 100 and 300 psi (0.7 to 2.1 MPa)
- Strengths vary widely according to specific agency and project requirements
- Proven strength and performance in both wet-dry and freeze-thaw environments
- May be used to reduce the overall thickness of a pavement or foundation



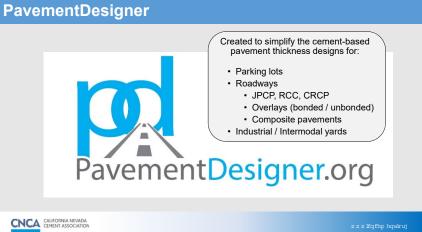
PCA Thickness Design Procedure

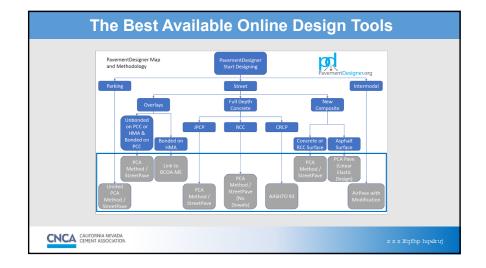
- First published in 1970 as PCA Thickness
 Design for Soil-Cement Pavements
- Based on research, full-scale tests, design theory, and observed pavement performance
- Fatigue consumption ultimately determines the base layer thickness
- Used when base will be covered with bituminous surfacing, although the design covers adequate thickness of the stabilized layer

1993 AASHTO Thickness Design Procedure

- AASHTO Guide For Design of Pavement Structures
- Based on AASHO Road Test
- Purely empirical method
- Conservative guidance for cement-stabilized base material contribution based on UCS
- Must assume layer coefficients
- Simple and quick determination of pavement design thickness

CNCA CALIFORNIA NEVADA CEMENT ASSOCIATION




AASHTOWare Pavement ME Design

- Design procedure formerly known as MEPDG
- Ultimate pavement thickness design tool
- Use of layered elastic analysis and developed performance models
- Use critical tensile stress at the bottom of the base layer
- · Requires a great deal of inputs
- Very expensive to access
- Performance checks of all layers must be made

Strength or Thickness? The ability of a cement-stabilized pavement layer to carry loads depends on both the strength and thickness of the layer • A thin, but strong layer can theoretically carry the same load as a thick, but weaker layer; however, the thin, strong layer may have greater shrinkage leading to undesirable cracking When selecting thicknesses for CSS layers, a thicker section with less strength but still meeting the durability requirements is preferred

•

Mixture Design Steps

- 1. Determine In Situ Moisture Content and Classify Soil
- 2. Determine Cement Type and Estimated Dosage Rate
- 3. Determine Chemical Compatibility (if necessary)
- 4. Determine Atterberg Limits of Three Different Cement **Content Samples**

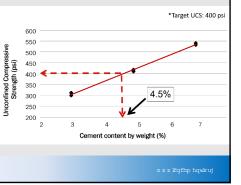
Well Graded Gravel	Poorly Graded Gravel	Silty Gravel	Clayey Gravel	Well Graded Sand	Poorly Graded Sand	Silty Sand	Clayey Sand	Silt, Silt with Sand	Lean Clay	Organic Silt/Organic Lean Clay	Elastic Silt	Fat Clay, Fat Clay with San
GW	GP	GM	GC	SW	SP	SM	SC	ML	CL	OL	MH	CH
A-1-a	A-1-a	A-1-b	A-1-b A-2-6	A-1-b	A-3 or A-1-b	A-2-4 or A-2-5	A-2-6 or A-2-7	A-4 or A-5	A-6	A-4	A-5 or A-7-5	A-7-6
	CALIFORNIA N										a a a 15a	for hour
NCA	CEMENT ASSO											fhp hqwl


Mixture Design Steps (cont.)

- 5. Determine Optimum Moisture Content and Maximum Dry Density
- · Use cement contents from previous Atterberg limits testing from Step 4
- Match the construction techniques (add cement either dry or slurry)
- · Use laboratory- or commercial-grade soil mixer for thorough blending
- · Samples should be molded ASAP (within one to two hours)

CNCA CALIFORNIA NEVADA CEMENT ASSOCIATION

Moisture-Density Relationship Max um Dry Den lh/cf) **Dry Density** 95 ptimum Moisture 23 25 27 19 21 29 Moisture Content ASTM D558 (%)


Mixture Design Steps (cont.) 6. Determine Unconfined Compressive Strength · Test at least three different cement contents • Test a minimum of two specimens for each cement content • Use the OMC from Step 5 to mold the specimens at various cement contents · Immerse the specimens in water for 4 hours prior to UCS testing

Mixture Design Steps (cont.)

- 7. Plot Unconfined Compressive Strength to Verify Cement Content
- The UCS results from Step 6 should be plotted on a graph
- The cement content is determined at the intersection of the design UCS
- A common practice is to increase the cement content by 0.5 to 1.0 percent to accommodate for construction uncertainties

CNCA CALIFORNIA NEVADA CEMENT ASSOCIATION

Mixture Design Steps (cont.) Density = 105 lb/ft³ 8. Compile Mix Design Report ents in pounds per square yard for compacted thick · Untreated soil properties · In situ moisture content and gradations 15.8 13.8 18.9 • MDD, OMC, and Atterberg limits 19.3 24.8 16.5 22.1 27.6 18.9 22.1 28.4 21.3 24.8 28.4 31.9 Treated soil properties 31.5 35.4 • MDD, OMC, and Atterberg limits 26.0 30.3 34.7 39.0 43.3 47.6 52.0 33.1 37.8 · UCS for trial cement contents 6.0 28.4 42.5 47.3 52.0 56.7 30.7 35.8 41.0 46.1 51.2 56.3 Cement Type and percentage 38.6 44.1 Construction Information Station limits and/or construction phase · Cement spread rate per treatment depth CNCA CALIFORNIA NEVADA CEMENT ASSOCIATION

Environmental Considerations

- Do not construct CSS in standing water
- ${\boldsymbol{\cdot}}$ Do not construct CSS on frozen ground
- Do not construct CSS when the air temperature is below 40°F (4°C)
- Do not apply dry cement on windy days

CSS Construction Process

- · Pulverize the roadbed materials
- Blade to desired roadway template
- Spread cement either dry or as a slurry
- Mix all materials directly on the roadbed
- Bring to optimum moisture content
- Compact to a min. 95 percent density
- Shape the roadway to plan requirements
- Perform curing and finishing

CNCA CALIFORNIA NEVADA CEMENT ASSOCIATION

CSS Construction Equipment

- Reclaimer/mixer
- Grader
- Cement distributor truck / slurry spreader
- Water truck
- Tamping/sheepsfoot/padfoot roller
- (for clayey and silty material)
- Smooth drum roller
- (for granular soils)
- Pneumatic tire roller
 - (optional)

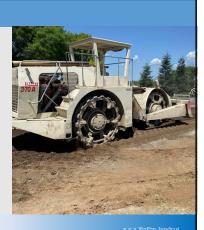
CNCA CALIFORNIA NEVADA CEMENT ASSOCIATION

CSS Construction Steps

- Pulverize the roadbed materials
- Blade to desired roadway template
- Spread cement either dry or as a slurry
- Mix all materials directly on the roadbed
- Bring to optimum moisture content
- Compact to minimum 95 percent density
- Shape the roadway to plan requirements
- Perform curing and finishing

CSS Construction Steps

- Pulverize the roadbed materials
- Blade to desired roadway template
- Spread cement either dry or as a slurry
- Mix all materials directly on the roadbed
- Bring to optimum moisture content
- · Compact to minimum 95 percent density
- · Shape the roadway to plan requirements
- · Perform curing and finishing


CNCA CALIFORNIA NEVADA CEMENT ASSOCIATION

CSS Construction Steps

- Pulverize the roadbed materials
- · Blade to desired roadway template
- Spread cement either dry or as a slurry
- Mix all materials directly on the roadbed
- Bring to optimum moisture content
- Compact to minimum 95 percent density
- · Shape the roadway to plan requirements
- Perform curing and finishing

CNCA CALIFORNIA NEVADA CEMENT ASSOCIATION

CSS Construction Steps

- · Pulverize the roadbed materials
- Blade to desired roadway template
- · Spread cement either dry or as a slurry
- Mix all materials directly on the roadbed
- · Bring to optimum moisture content
- Compact to minimum 95 percent density
- Shape the roadway to plan requirements
- Perform curing and finishing

CNCA CALIFORNIA NEVADA CEMENT ASSOCIATION

Quality Control

- The engineer and contractor should perform any inspections and tests necessary to ensure a successful project outcome.
- Obtaining samples of soil material and individual components at all stages of processing and after processing is completed.
- Observing the operation of all equipment used and personnel employed to perform the work (test strip sometimes required).
- All testing of processed material or its individual components shall be in accordance with the latest specifications.
- COMMUNICATION

CNCA CALIFORNIA NEVADA CEMENT ASSOCIATION

z z z lfqfhp hq

Gradation/Uniformity	Moisture	Density	Thickness
A common gradation requirement is for 100% to pass the 1.5-inch (38 mm) sieve and a minimum of 60% to pass the No. 4 (4.75 mm) sieve (ASTM D6913).	A common moisture requirement is to be within 2% of the laboratory established optimum moisture content (ASTM D558).	A common density requirement is to achieve at least 95% of the established laboratory standard Proctor density (ASTM D558).	Requirements for subgrade depths can vary from as little as 6 inches (150 mm) up to 2 feet (0.6 m) depending on governing agency.
			z z z ifafhp hqviruj

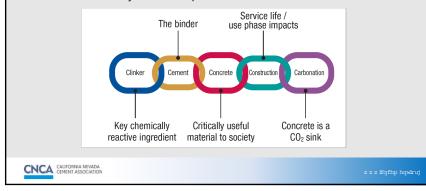
Important (often overlapping) Definitions

- Quality "suitable for its intended purpose while satisfying customer expectations"
- **Durability** "able to withstand wear, pressure, or damage"
- Resiliency "able to recoil or spring back into shape after bending, stretching, or being compressed"
- Sustainability "able to be maintained at a certain rate or level"

CNCA CALIFORNIA NEVADA CEMENT ASSOCIATION

z z z lfqfhp hqwlruj

The PCA Roadmap to Carbon Neutrality


- An ambitious journey to carbon neutrality across the entire cement and concrete value chain by 2050
- Industry must act now to further reduce GHGs and create sustainable building solutions (increased pressure to reduce our environmental impact from designers, regulators, even the public)
- The Roadmap demonstrates how the U.S. cement and concrete industry can address climate change, decrease GHGs, and eliminate barriers that are restricting environmental progress

The Cement and Concrete Value Chain

Cement and concrete are so essential to the way we live, that our entire industry must do its part to address climate issues.

Sustainable Cement-Stabilized Subgrade

- Reduces waste by allowing the use of existing in-place marginal materials, plus minimizes the need to haul in costly select materials resulting in a tremendous reduction in emissions
- Provides for a stronger and more stable subgrade, which often reduces the quantity of virgin base/subbase materials needed
- Can accelerate construction schedules leading to fewer/less severe community interruptions
- Permanent soil changes mean they do not revert back to their original state, even after many cycles or years of weathering and service

CNCA CALIFORNIA NEVADA CEMENT ASSOCIATION

CSS Guide · Describes characteristics, uses, and benefits of CSS and presents **Cement-Stabilized Subgrade Soils** methods for evaluation, design, construction, and field testing Chapter 1 – Introduction Chapter 2 – Materials and Properties • Chapter 3 – Geotechnical Evaluation and Field Sampling Chapter 4 – Mixture Design • Chapter 5 – Construction, Field Inspection, and Testing • Chapter 6 – Case Studies • Guide specifications for the construction of CSS soils PCA Services UNIVERSIT CNCA CALIFORNIA NEVADA CEMENT ASSOCIATION

Type (CMS) (CSS) (CSS) <th)< th=""><th>Soil-Cement</th><th>Cement-Modified Soil</th><th></th><th>Cement-Treated</th><th>Full-Depth Reclamation</th></th)<>	Soil-Cement	Cement-Modified Soil		Cement-Treated	Full-Depth Reclamation
Primarily fine-grained Sils 2%-4% cement Primarily fine-grained soils 2%-4% cement Sils 2%-4% cement Sils 2%-6% cement Sils 2%-6% cement Sils 2%-6% cement Sils 2%-6% cement Sils 3%-6% cement Sils Sil	Type Purpose	 Provides a significant improvement to the working platform Provides a permanent soil modification 	plus the following: - Potentially allows for a reduction in pavement thickness or increased pavement life - Increases the bearing capacity for building slabs, footings, and	frost-resistant base layer for asphalt or	resistant base layer for asphalt or concrete
Material Properties - Reduced moisture susceptibility • 100-300 psi (0.7-2.1 MPa) seven-day day compressive strength • 300-300 psi (2.1-4.1 MPa) seven-day compressive strength Construction Practices • Minimum 95% of maximum density • Minimum 95% of Mixed in place • Minimum 95%-98% of Mixed in place	Materials	soils	 Primarily fine-grained soils 	coarse-grained manufactured materials	blended with existing pavement base, subbase, and/or subgrade
Practices • Minimum 95% of Practices • Minimum 95% of maximum density • Mixed in place • • Mixed in place or at • Mixed in place • • • • • • • • • • • • • • • • • • •				MPa) seven-day compressive	seven-day compressive
		maximum density		of maximum density Mixed in place or at	maximum density

