InTrans / Aug 14, 2018
Assessment of the environmental effects associated with wooden bridges preserved with creosote, pentachlorophenol, or chromated copper arsenate
Timber bridges provide an economical alternative to concrete and steel structures, particularly in rural areas with light to moderate vehicle traffic. Wooden components of these bridges are treated with chromated copper arsenate type C (CCA), pentachlorophenol, or creosote to prolong the life of the structure from a few years to many decades. This results in reduced transportation infrastructure costs and increased public safety. However, the preservative used to treat the wooden components in timber bridges is lost to the environment in small amounts over time. This report describes the concentration of wood preservatives lost to adjacent environments and the biological response to these preservatives as environmental contaminants. Six bridges from various states were examined for risk assessment: two creosotetreated bridges, two pentachlorophenol-treated bridges, and two CCA-treated bridges. In all cases, the largest bridges located in biologically active environments associated with slow-flowing water were selected to represent worst-case analyses. Sediment and water column concentrations of preservative were analyzed upstream from, under, and downstream from each bridge. The observed levels of contaminant were compared with available regulatory standards or benchmarks and with the quantitative description of the aquatic invertebrate community sampled from vegetation and sediments. Pentachlorophenol- and creosote-derived polycyclic aromatic hydrocarbons (PAHs) were not observed in the water near any of the selected bridges.